Documentation

Carleson.ToMathlib.LorentzType

def MeasureTheory.HasLorentzType {α : Type u_1} {α' : Type u_2} {ε₁ : Type u_3} {ε₂ : Type u_4} {m0 : MeasurableSpace α} {m : MeasurableSpace α'} [TopologicalSpace ε₁] [TopologicalSpace ε₂] [ENorm ε₁] [ENorm ε₂] (T : (αε₁)α'ε₂) (p r q s : ENNReal) (μ : Measure α) (ν : Measure α') (c : ENNReal) :

An operator has Lorentz type (p, r, q, s) if it is bounded as a map from L^{q, s} to L^{p, r}. HasLorentzType T p r q s μ ν c means that T has Lorentz type (p, r, q, s) w.r.t. measures μ, ν and constant c.

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    theorem MeasureTheory.hasStrongType_iff_hasLorentzType {α : Type u_1} {α' : Type u_2} {ε₁ : Type u_3} {ε₂ : Type u_4} {m0 : MeasurableSpace α} {m : MeasurableSpace α'} {μ : Measure α} {ν : Measure α'} [TopologicalSpace ε₁] [TopologicalSpace ε₂] {p q : ENNReal} [ESeminormedAddMonoid ε₁] [ESeminormedAddMonoid ε₂] {T : (αε₁)α'ε₂} {c : ENNReal} :
    HasStrongType T p q μ ν c HasLorentzType T p p q q μ ν c
    def MeasureTheory.HasRestrictedWeakType {α : Type u_1} {α' : Type u_2} {ε₂ : Type u_4} {m0 : MeasurableSpace α} {m : MeasurableSpace α'} [TopologicalSpace ε₂] {β : Type u_5} [Zero β] [One β] [ENorm ε₂] (T : (αβ)α'ε₂) (p q : ENNReal) (μ : Measure α) (ν : Measure α') (c : ENNReal) :

    Defines when an operator "has restricted weak type". This is an even weaker version of HasBoundedWeakType.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      theorem MeasureTheory.HasRestrictedWeakType.without_finiteness {α : Type u_1} {α' : Type u_2} {ε₂ : Type u_4} {m0 : MeasurableSpace α} {m : MeasurableSpace α'} {μ : Measure α} {ν : Measure α'} [TopologicalSpace ε₂] {p q : ENNReal} {β : Type u_5} [Zero β] [One β] [ESeminormedAddMonoid ε₂] {T : (αβ)α'ε₂} (p_ne_zero : p 0) (p_ne_top : p ) (q_ne_zero : q 0) (q_ne_top : q ) {c : NNReal} (c_pos : 0 < c) (hT : HasRestrictedWeakType T p q μ ν c) (T_zero_of_ae_zero : ∀ {f : αβ}, f =ᶠ[ae μ] 0enorm T f =ᶠ[ae ν] 0) (F : Set α) (G : Set α') :
      MeasurableSet FMeasurableSet GeLpNorm (T (F.indicator fun (x : α) => 1)) 1 (ν.restrict G) c * μ F ^ p⁻¹.toReal * ν G ^ q⁻¹.toReal
      def MeasureTheory.HasRestrictedWeakType' {α : Type u_1} {α' : Type u_2} {ε₂ : Type u_4} {m0 : MeasurableSpace α} {m : MeasurableSpace α'} [TopologicalSpace ε₂] {β : Type u_5} [TopologicalSpace β] [ENorm β] [ENorm ε₂] (T : (αβ)α'ε₂) (p q : ENNReal) (μ : Measure α) (ν : Measure α') (c : ENNReal) :

      An enhanced version of HasRestrictedWeakType

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        theorem MeasureTheory.Filter.mono_limsup {α : Type u_6} {β : Type u_7} [CompleteLattice α] {f : Filter β} {u v : βα} (h : ∀ (x : β), u x v x) :
        theorem MeasureTheory.Filter.limsup_le_of_le' {α : Type u_6} {β : Type u_7} [CompleteLattice α] {f : Filter β} {u : βα} {a : α} (h : ∀ᶠ (n : β) in f, u n a) :
        theorem MeasureTheory.ENNReal.rpow_add_rpow_le_add' {p : } (a b : ENNReal) (hp1 : 1 p) :
        a ^ p + b ^ p (a + b) ^ p
        theorem MeasureTheory.ENNReal.limsup_mul_const_of_ne_top {α : Type u_6} {f : Filter α} {u : αENNReal} {a : ENNReal} (ha_top : a ) :
        Filter.limsup (fun (x : α) => u x * a) f = Filter.limsup u f * a
        theorem MeasureTheory.ENNReal.limsup_mul_const {α : Type u_1} {f : Filter α} [CountableInterFilter f] {u : αENNReal} {a : ENNReal} :
        Filter.limsup (fun (x : α) => u x * a) f = Filter.limsup u f * a
        def MeasureTheory.WeaklyContinuous {α : Type u_1} {α' : Type u_2} {m0 : MeasurableSpace α} {m : MeasurableSpace α'} {ε : Type u_6} {ε' : Type u_7} [TopologicalSpace ε] [ENorm ε] [SupSet ε] [Preorder ε] [ENorm ε'] (T : (αε)α'ε') (p : ENNReal) (μ : Measure α) (ν : Measure α') :

        The weak continuity assumption needed for HasRestrictedWeakType.hasLorentzType_helper.

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For
          theorem MeasureTheory.HasRestrictedWeakType.hasRestrictedWeakType'_nnreal {α : Type u_1} {α' : Type u_2} {m0 : MeasurableSpace α} {m : MeasurableSpace α'} {μ : Measure α} {ν : Measure α'} {p q : ENNReal} {ε' : Type u_7} [TopologicalSpace ε'] [ENormedSpace ε'] {c : NNReal} (c_pos : 0 < c) {T : (αNNReal)α'ε'} (p_ne_top : p ) (q_ne_top : q ) (hpq : p.HolderConjugate q) (T_meas : ∀ {f : αNNReal}, MemLorentz f p 1 μAEStronglyMeasurable (T f) ν) (T_subadd : ∀ {f g : αNNReal}, MemLorentz f p 1 μMemLorentz g p 1 μ∀ᵐ (x : α') ν, T (f + g) x‖ₑ T f x‖ₑ + T g x‖ₑ) (T_submul : ∀ (a : NNReal) (f : αNNReal), ∀ᵐ (x : α') ν, T (a f) x‖ₑ a‖ₑ * T f x‖ₑ) (T_ae_eq_of_ae_eq : ∀ {f g : αNNReal}, f =ᶠ[ae μ] gT f =ᶠ[ae ν] T g) (T_zero : T 0 =ᶠ[ae ν] 0) (hT : HasRestrictedWeakType T p q μ ν c) (weakly_cont_T : WeaklyContinuous T p μ ν) :
          HasRestrictedWeakType' T p q μ ν (c / p)
          theorem MeasureTheory.HasRestrictedWeakType'.hasLorentzType {α : Type u_1} {α' : Type u_2} {m0 : MeasurableSpace α} {m : MeasurableSpace α'} {μ : Measure α} {ν : Measure α'} {p q : ENNReal} {ε' : Type u_7} [SigmaFinite ν] {𝕂 : Type u_8} [RCLike 𝕂] [TopologicalSpace ε'] [ENormedSpace ε'] {T : (α𝕂)α'ε'} (hpq : p.HolderConjugate q) (hp : p ) (hq : q ) {c : ENNReal} (hc : c ) (hT : HasRestrictedWeakType' T p q μ ν c) :
          HasLorentzType T p 1 p μ ν c
          def MeasureTheory.RCLike.Components {𝕂 : Type u_8} [RCLike 𝕂] :
          Finset 𝕂

          TODO: check whether this is the right approach

          Equations
          Instances For
            theorem MeasureTheory.RCLike.Components.norm_eq_one {𝕂 : Type u_8} [RCLike 𝕂] {c : 𝕂} (hc : c Components) (hc' : c 0) :
            theorem MeasureTheory.RCLike.Components.norm_le_one {𝕂 : Type u_8} [RCLike 𝕂] {c : 𝕂} (hc : c Components) :
            def MeasureTheory.RCLike.component {𝕂 : Type u_8} [RCLike 𝕂] (c a : 𝕂) :

            TODO: check whether this is the right approach

            Equations
            Instances For
              theorem MeasureTheory.RCLike.component_le_norm {𝕂 : Type u_8} [RCLike 𝕂] {c a : 𝕂} (hc : c Components) :
              (component c a) a
              theorem MeasureTheory.RCLike.component_le_nnnorm {𝕂 : Type u_8} [RCLike 𝕂] {c a : 𝕂} (hc : c Components) :
              theorem MeasureTheory.RCLike.decomposition {𝕂 : Type u_8} [RCLike 𝕂] {a : 𝕂} :
              1 * (algebraMap 𝕂) (component 1 a) + -1 * (algebraMap 𝕂) (component (-1) a) + RCLike.I * (algebraMap 𝕂) (component RCLike.I a) + -RCLike.I * (algebraMap 𝕂) (component (-RCLike.I) a) = a
              theorem MeasureTheory.RCLike.nnnorm_ofReal {𝕂 : Type u_8} [RCLike 𝕂] {a : NNReal} :
              a = a‖₊
              theorem MeasureTheory.RCLike.induction {α : Type u_1} {𝕂 : Type u_8} [RCLike 𝕂] {β : Type u_9} [Mul β] {a b : β} {P : (α𝕂)Prop} (P_add : ∀ {f g : α𝕂}, P fP gP (f + g)) (P_components : ∀ {f : α𝕂} {c : 𝕂}, c ComponentsP fP ((algebraMap 𝕂) NNReal.toReal component c f)) (P_mul_unit : ∀ {f : α𝕂} {c : 𝕂}, c ComponentsP fP (c f)) {motive : (α𝕂)βProp} (motive_nnreal : ∀ {f : αNNReal}, P ((algebraMap 𝕂) NNReal.toReal f)motive ((algebraMap 𝕂) NNReal.toReal f) a) (motive_add' : ∀ {n : β} {f g : α𝕂}, (∀ {x : α}, f x f x + g x)(∀ {x : α}, g x f x + g x)P fP gmotive f nmotive g nmotive (f + g) (n * b)) (motive_mul_unit : ∀ {f : α𝕂} {c : 𝕂} {n : β}, c ComponentsP fmotive f nmotive (c f) n) f : α𝕂 (hf : P f) :
              motive f (a * b * b)
              theorem MeasureTheory.enorm_eq_enorm_embedRCLike {α : Type u_1} {𝕂 : Type u_8} [RCLike 𝕂] {f : αNNReal} (x : α) :
              theorem MeasureTheory.memLorentz_iff_memLorentz_embedRCLike {α : Type u_1} {m0 : MeasurableSpace α} {μ : Measure α} {p q : ENNReal} {𝕂 : Type u_8} [RCLike 𝕂] {f : αNNReal} :
              MemLorentz ((algebraMap 𝕂) NNReal.toReal f) p q μ MemLorentz f p q μ
              theorem MeasureTheory.HasRestrictedWeakType'.of_hasRestrictedWeakType'_nnreal {α : Type u_1} {α' : Type u_2} {m0 : MeasurableSpace α} {m : MeasurableSpace α'} {μ : Measure α} {ν : Measure α'} {p q : ENNReal} {ε' : Type u_7} [NoAtoms μ] {𝕂 : Type u_8} [RCLike 𝕂] [TopologicalSpace ε'] [ENormedSpace ε'] {T : (α𝕂)α'ε'} (T_meas : ∀ {f : α𝕂}, MemLorentz f p 1 μAEStronglyMeasurable (T f) ν) (T_zero : T 0 =ᶠ[ae ν] 0) (T_subadd : ∀ {f g : α𝕂}, MemLorentz f p 1 μMemLorentz g p 1 μ∀ᵐ (x : α') ν, T (f + g) x‖ₑ T f x‖ₑ + T g x‖ₑ) (T_submul : ∀ (a : 𝕂) (f : α𝕂), ∀ᵐ (x : α') ν, T (a f) x‖ₑ a‖ₑ * T f x‖ₑ) {c : ENNReal} (hT_nnreal : HasRestrictedWeakType' (fun (f : αNNReal) => T ((algebraMap 𝕂) NNReal.toReal f)) p q μ ν c) :
              HasRestrictedWeakType' T p q μ ν (4 * c)
              theorem MeasureTheory.HasRestrictedWeakType.hasLorentzType {α : Type u_1} {α' : Type u_2} {m0 : MeasurableSpace α} {m : MeasurableSpace α'} {μ : Measure α} {ν : Measure α'} {ε' : Type u_7} {𝕂 : Type u_8} [RCLike 𝕂] [TopologicalSpace ε'] [ENormedSpace ε'] {T : (α𝕂)α'ε'} {p q : ENNReal} (hpq : p.HolderConjugate q) (p_ne_top : p ) (q_ne_top : q ) [NoAtoms μ] [SigmaFinite ν] {c : NNReal} (c_pos : 0 < c) (hT : HasRestrictedWeakType T p q μ ν c) (T_meas : ∀ {f : α𝕂}, MemLorentz f p 1 μAEStronglyMeasurable (T f) ν) (T_subadd : ∀ {f g : α𝕂}, MemLorentz f p 1 μMemLorentz g p 1 μ∀ᵐ (x : α') ν, T (f + g) x‖ₑ T f x‖ₑ + T g x‖ₑ) (T_submul : ∀ (a : 𝕂) (f : α𝕂), ∀ᵐ (x : α') ν, T (a f) x‖ₑ a‖ₑ * T f x‖ₑ) (weakly_cont_T : ∀ {f : α𝕂} {fs : α𝕂}, MemLorentz f p 1 μ(∀ (n : ), AEStronglyMeasurable (fs n) μ)(∀ (a : α), Monotone fun (n : ) => fs n a)(∀ (a : α), Filter.Tendsto (fun (n : ) => fs n a) Filter.atTop (nhds (f a)))∀ (G : Set α'), eLpNorm (T f) 1 (ν.restrict G) Filter.limsup (fun (n : ) => eLpNorm (T (fs n)) 1 (ν.restrict G)) Filter.atTop) (T_zero : T 0 =ᶠ[ae ν] 0) (T_ae_eq_of_ae_eq : ∀ {f g : α𝕂}, f =ᶠ[ae μ] gT f =ᶠ[ae ν] T g) :
              HasLorentzType T p 1 p μ ν (4 * c / p)