Documentation

Carleson.ToMathlib.MeasureTheory.Function.LorentzSeminorm.Defs

Lorentz space #

This file describes properties of almost everywhere strongly measurable functions with finite (p,q)-seminorm, denoted by eLorentzNorm f p q μ.

The Prop-valued MemLorentz f p q μ states that a function f : α → ε has finite (p,q)-seminorm and is almost everywhere strongly measurable.

Main definitions #

def MeasureTheory.eLorentzNorm' {α : Type u_1} {ε : Type u_2} {m0 : MeasurableSpace α} [ENorm ε] (f : αε) (p q : ENNReal) (μ : Measure α) :

The Lorentz seminorm of a function, for 0 < p < ∞

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    @[simp]
    theorem MeasureTheory.eLorentzNorm'_exponent_zero' {α : Type u_1} {ε : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} [ENorm ε] {f : αε} {μ : Measure α} :
    eLorentzNorm' f p 0 μ = 0
    theorem MeasureTheory.eLorentzNorm'_eq {α : Type u_1} {ε : Type u_2} {m0 : MeasurableSpace α} {p q : ENNReal} [ENorm ε] (p_nonzero : p 0) (p_ne_top : p ) {f : αε} {μ : Measure α} :
    eLorentzNorm' f p q μ = eLpNorm (fun (t : NNReal) => t ^ p⁻¹.toReal * rearrangement f (↑t) μ) q (volume.withDensity fun (t : NNReal) => (↑t)⁻¹)
    theorem MeasureTheory.eLorentzNorm'_eq' {α : Type u_1} {ε : Type u_2} {m0 : MeasurableSpace α} {p q : ENNReal} [ENorm ε] (p_nonzero : p 0) (p_ne_top : p ) {f : αε} {μ : Measure α} :
    eLorentzNorm' f p q μ = eLpNorm (fun (t : NNReal) => t ^ (p⁻¹.toReal - q⁻¹.toReal) * rearrangement f (↑t) μ) q volume
    theorem MeasureTheory.eLorentzNorm'_eq_integral_distribution_rpow {α : Type u_1} {ε : Type u_2} {p : ENNReal} [ENorm ε] {x✝ : MeasurableSpace α} {f : αε} {μ : Measure α} :
    eLorentzNorm' f p 1 μ = p * ∫⁻ (t : NNReal), distribution f (↑t) μ ^ p.toReal⁻¹
    def MeasureTheory.eLorentzNorm {α : Type u_1} {ε : Type u_2} {m0 : MeasurableSpace α} [ENorm ε] (f : αε) (p q : ENNReal) (μ : Measure α) :

    The Lorentz seminorm of a function

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      theorem MeasureTheory.eLorentzNorm_eq_eLorentzNorm' {α : Type u_1} {ε : Type u_2} {m0 : MeasurableSpace α} {p q : ENNReal} [ENorm ε] {μ : Measure α} (hp_ne_zero : p 0) (hp_ne_top : p ) {f : αε} :
      eLorentzNorm f p q μ = eLorentzNorm' f p q μ
      theorem MeasureTheory.eLorentzNorm_eq {α : Type u_1} {ε : Type u_2} {m0 : MeasurableSpace α} {p q : ENNReal} [ENorm ε] {μ : Measure α} (p_nonzero : p 0) (p_ne_top : p ) {f : αε} :
      eLorentzNorm f p q μ = eLpNorm (fun (t : NNReal) => t ^ p⁻¹.toReal * rearrangement f (↑t) μ) q (volume.withDensity fun (t : NNReal) => (↑t)⁻¹)
      @[simp]
      theorem MeasureTheory.eLorentzNorm_exponent_zero {α : Type u_1} {ε : Type u_2} {m0 : MeasurableSpace α} {q : ENNReal} [ENorm ε] {μ : Measure α} {f : αε} :
      eLorentzNorm f 0 q μ = 0
      @[simp]
      theorem MeasureTheory.eLorentzNorm_exponent_zero' {α : Type u_1} {ε : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} [ENorm ε] {μ : Measure α} {f : αε} :
      eLorentzNorm f p 0 μ = 0
      @[simp]
      theorem MeasureTheory.eLorentzNorm_exponent_top_top {α : Type u_1} {ε : Type u_2} {m0 : MeasurableSpace α} [ENorm ε] {μ : Measure α} {f : αε} :
      theorem MeasureTheory.eLorentzNorm_exponent_top' {α : Type u_1} {ε : Type u_2} {m0 : MeasurableSpace α} {q : ENNReal} [ENorm ε] {μ : Measure α} {f : αε} (q_ne_zero : q 0) (q_ne_top : q ) (hf : eLpNormEssSup f μ 0) :
      theorem MeasureTheory.eLorentzNorm_exponent_top {α : Type u_1} {m0 : MeasurableSpace α} {q : ENNReal} {μ : Measure α} {ε : Type u_4} [TopologicalSpace ε] [ENormedAddMonoid ε] {f : αε} (q_ne_zero : q 0) (q_ne_top : q ) (hf : ¬f =ᶠ[ae μ] 0) :
      def MeasureTheory.MemLorentz {α : Type u_1} {ε : Type u_2} {m0 : MeasurableSpace α} [ENorm ε] [TopologicalSpace ε] (f : αε) (p r : ENNReal) (μ : Measure α) :

      A function is in the Lorentz space L^{p,q} if it is (strongly a.e.)-measurable and has finite Lorentz seminorm.

      Equations
      Instances For
        theorem MeasureTheory.MemLorentz.aestronglyMeasurable {α : Type u_1} {ε : Type u_2} {m0 : MeasurableSpace α} {q : ENNReal} [ENorm ε] {μ : Measure α} [TopologicalSpace ε] {f : αε} {p : ENNReal} (h : MemLorentz f p q μ) :
        theorem MeasureTheory.MemLorentz.aemeasurable {α : Type u_1} {ε : Type u_2} {m0 : MeasurableSpace α} {q : ENNReal} [ENorm ε] {μ : Measure α} [MeasurableSpace ε] [TopologicalSpace ε] [TopologicalSpace.PseudoMetrizableSpace ε] [BorelSpace ε] {f : αε} {p : ENNReal} (hf : MemLorentz f p q μ) :