Triangle inequality for Lorentz-seminorm #
In this file we prove several versions of the triangle inequality for the Lorentz seminorm,
as well as simple corollaries.
theorem
MeasureTheory.eLpNorm_withDensity_scale_constant'
{f : NNReal → ENNReal}
(hf : AEStronglyMeasurable f volume)
{p : ENNReal}
{a : NNReal}
(h : a ≠ 0)
:
theorem
MeasureTheory.eLorentzNorm_add_le''
{α : Type u_1}
{ε : Type u_2}
{m : MeasurableSpace α}
[TopologicalSpace ε]
[ESeminormedAddMonoid ε]
{p q : ENNReal}
{μ : Measure α}
{f g : α → ε}
:
eLorentzNorm (f + g) p q μ ≤ 2 ^ p.toReal⁻¹ * LpAddConst q * (eLorentzNorm f p q μ + eLorentzNorm g p q μ)
noncomputable def
MeasureTheory.lorentz_helper
{α : Type u_1}
{ε : Type u_2}
{m : MeasurableSpace α}
[TopologicalSpace ε]
[ESeminormedAddMonoid ε]
(f : α → ε)
(p q : ENNReal)
(μ : Measure α)
:
The function k in the proof of Theorem 6.7 in https://doi.org/10.1007/978-3-319-30034-4
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
MeasureTheory.eLpNorm_lorentz_helper
{α : Type u_1}
{ε : Type u_2}
{m : MeasurableSpace α}
[TopologicalSpace ε]
[ESeminormedAddMonoid ε]
{p q : ENNReal}
{μ : Measure α}
{f : α → ε}
:
theorem
MeasureTheory.antitone_lorentz_helper
{α : Type u_1}
{ε : Type u_2}
{m : MeasurableSpace α}
[TopologicalSpace ε]
[ESeminormedAddMonoid ε]
{p q : ENNReal}
{μ : Measure α}
{f : α → ε}
:
Antitone (lorentz_helper f p q μ)
theorem
MeasureTheory.lorentz_helper_measurable
{α : Type u_1}
{ε : Type u_2}
{m : MeasurableSpace α}
[TopologicalSpace ε]
[ESeminormedAddMonoid ε]
{p q : ENNReal}
{μ : Measure α}
{f : α → ε}
:
Measurable (lorentz_helper f p q μ)
theorem
MeasureTheory.eLorentzNorm'_eq_lintegral_lorentz_helper_mul
{α : Type u_1}
{ε : Type u_2}
{m : MeasurableSpace α}
[TopologicalSpace ε]
[ESeminormedAddMonoid ε]
{p q : ENNReal}
{μ : Measure α}
{f : α → ε}
:
eLorentzNorm' f p q μ = eLpNorm (lorentz_helper f p q μ * fun (t : NNReal) => ↑t ^ (p⁻¹.toReal - q⁻¹.toReal) * rearrangement f (↑t) μ) 1
volume
theorem
MeasureTheory.eLorentzNorm_add_le
{α : Type u_1}
{ε : Type u_2}
{m : MeasurableSpace α}
[TopologicalSpace ε]
[ESeminormedAddMonoid ε]
{p q : ENNReal}
{μ : Measure α}
{f g : α → ε}
(one_le_q : 1 ≤ q)
(q_le_p : q ≤ p)
[NoAtoms μ]
(hf : AEStronglyMeasurable f μ)
(hg : AEStronglyMeasurable g μ)
:
A constant for the inequality ‖f + g‖_{L^{p,q}} ≤ C * (‖f‖_{L^{p,q}} + ‖g‖_{L^{p,q}}). It is equal to 1
if p = 0 or 1 ≤ r ≤ p and 2^(1/p) * LpAddConst r else.
Equations
Instances For
theorem
MeasureTheory.eLorentzNorm_add_le'
{α : Type u_1}
{ε : Type u_2}
{m : MeasurableSpace α}
[TopologicalSpace ε]
[ESeminormedAddMonoid ε]
{p q : ENNReal}
{μ : Measure α}
{f g : α → ε}
[NoAtoms μ]
(hf : AEStronglyMeasurable f μ)
(hg : AEStronglyMeasurable g μ)
:
theorem
MeasureTheory.eLorentzNorm_add_lt_top
{α : Type u_1}
{ε : Type u_2}
{m : MeasurableSpace α}
[TopologicalSpace ε]
[ESeminormedAddMonoid ε]
{p q : ENNReal}
{μ : Measure α}
{f g : α → ε}
[NoAtoms μ]
(hf : MemLorentz f p q μ)
(hg : MemLorentz g p q μ)
:
theorem
MeasureTheory.MemLorentz.add
{α : Type u_1}
{ε : Type u_2}
{m : MeasurableSpace α}
[TopologicalSpace ε]
[ESeminormedAddMonoid ε]
{p q : ENNReal}
{μ : Measure α}
{f g : α → ε}
[NoAtoms μ]
[ContinuousAdd ε]
(hf : MemLorentz f p q μ)
(hg : MemLorentz g p q μ)
:
MemLorentz (f + g) p q μ
theorem
MeasureTheory.eLorentzNorm_add_le_of_disjoint_support
{α : Type u_1}
{ε : Type u_2}
{m : MeasurableSpace α}
[TopologicalSpace ε]
[ESeminormedAddMonoid ε]
{p q : ENNReal}
{μ : Measure α}
{f g : α → ε}
(h : Disjoint (Function.support f) (Function.support g))
(hg : AEStronglyMeasurable g μ)
:
eLorentzNorm (f + g) p q μ ≤ LpAddConst p * LpAddConst q * (eLorentzNorm f p q μ + eLorentzNorm g p q μ)