Documentation

Carleson.ToMathlib.MeasureTheory.Function.LorentzSeminorm.TriangleInequality

Triangle inequality for Lorentz-seminorm #

In this file we prove several versions of the triangle inequality for the Lorentz seminorm, as well as simple corollaries.

theorem MeasureTheory.eLpNorm_withDensity_scale_constant' {f : NNRealENNReal} (hf : AEStronglyMeasurable f volume) {p : ENNReal} {a : NNReal} (h : a 0) :
eLpNorm (fun (t : NNReal) => f (a * t)) p (volume.withDensity fun (t : NNReal) => (↑t)⁻¹) = eLpNorm f p (volume.withDensity fun (t : NNReal) => (↑t)⁻¹)
theorem MeasureTheory.eLorentzNorm_add_le'' {α : Type u_1} {ε : Type u_2} {m : MeasurableSpace α} [TopologicalSpace ε] [ESeminormedAddMonoid ε] {p q : ENNReal} {μ : Measure α} {f g : αε} :
eLorentzNorm (f + g) p q μ 2 ^ p.toReal⁻¹ * LpAddConst q * (eLorentzNorm f p q μ + eLorentzNorm g p q μ)
theorem MeasureTheory.lintegral_antitone_mul_le {f g k : NNRealENNReal} (h : ∀ {t : NNReal}, ∫⁻ (s : NNReal) in Set.Iio t, f s ∫⁻ (s : NNReal) in Set.Iio t, g s) (hk : Antitone k) :
∫⁻ (s : NNReal), k s * f s ∫⁻ (s : NNReal), k s * g s
noncomputable def MeasureTheory.lorentz_helper {α : Type u_1} {ε : Type u_2} {m : MeasurableSpace α} [TopologicalSpace ε] [ESeminormedAddMonoid ε] (f : αε) (p q : ENNReal) (μ : Measure α) :

The function k in the proof of Theorem 6.7 in https://doi.org/10.1007/978-3-319-30034-4

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    theorem MeasureTheory.eLpNorm_lorentz_helper {α : Type u_1} {ε : Type u_2} {m : MeasurableSpace α} [TopologicalSpace ε] [ESeminormedAddMonoid ε] {p q : ENNReal} {μ : Measure α} {f : αε} :
    theorem MeasureTheory.antitone_rpow_inv_sub_inv {p q : ENNReal} (q_le_p : q p) (p_zero : ¬p = 0) (p_top : ¬p = ) :
    Antitone fun (x : NNReal) => x ^ (p.toReal⁻¹ - q.toReal⁻¹)
    theorem MeasureTheory.antitone_lorentz_helper {α : Type u_1} {ε : Type u_2} {m : MeasurableSpace α} [TopologicalSpace ε] [ESeminormedAddMonoid ε] {p q : ENNReal} {μ : Measure α} {f : αε} :
    theorem MeasureTheory.lorentz_helper_measurable {α : Type u_1} {ε : Type u_2} {m : MeasurableSpace α} [TopologicalSpace ε] [ESeminormedAddMonoid ε] {p q : ENNReal} {μ : Measure α} {f : αε} :
    theorem MeasureTheory.eLorentzNorm'_eq_lintegral_lorentz_helper_mul {α : Type u_1} {ε : Type u_2} {m : MeasurableSpace α} [TopologicalSpace ε] [ESeminormedAddMonoid ε] {p q : ENNReal} {μ : Measure α} {f : αε} :
    eLorentzNorm' f p q μ = eLpNorm (lorentz_helper f p q μ * fun (t : NNReal) => t ^ (p⁻¹.toReal - q⁻¹.toReal) * rearrangement f (↑t) μ) 1 volume
    theorem MeasureTheory.eLorentzNorm_add_le {α : Type u_1} {ε : Type u_2} {m : MeasurableSpace α} [TopologicalSpace ε] [ESeminormedAddMonoid ε] {p q : ENNReal} {μ : Measure α} {f g : αε} (one_le_q : 1 q) (q_le_p : q p) [NoAtoms μ] (hf : AEStronglyMeasurable f μ) (hg : AEStronglyMeasurable g μ) :
    eLorentzNorm (f + g) p q μ eLorentzNorm f p q μ + eLorentzNorm g p q μ
    noncomputable def MeasureTheory.LorentzAddConst (p r : ENNReal) :

    A constant for the inequality ‖f + g‖_{L^{p,q}} ≤ C * (‖f‖_{L^{p,q}} + ‖g‖_{L^{p,q}}). It is equal to 1 if p = 0 or 1 ≤ r ≤ p and 2^(1/p) * LpAddConst r else.

    Equations
    Instances For
      theorem MeasureTheory.eLorentzNorm_add_le' {α : Type u_1} {ε : Type u_2} {m : MeasurableSpace α} [TopologicalSpace ε] [ESeminormedAddMonoid ε] {p q : ENNReal} {μ : Measure α} {f g : αε} [NoAtoms μ] (hf : AEStronglyMeasurable f μ) (hg : AEStronglyMeasurable g μ) :
      eLorentzNorm (f + g) p q μ LorentzAddConst p q * (eLorentzNorm f p q μ + eLorentzNorm g p q μ)
      theorem MeasureTheory.eLorentzNorm_add_lt_top {α : Type u_1} {ε : Type u_2} {m : MeasurableSpace α} [TopologicalSpace ε] [ESeminormedAddMonoid ε] {p q : ENNReal} {μ : Measure α} {f g : αε} [NoAtoms μ] (hf : MemLorentz f p q μ) (hg : MemLorentz g p q μ) :
      eLorentzNorm (f + g) p q μ <
      theorem MeasureTheory.MemLorentz.add {α : Type u_1} {ε : Type u_2} {m : MeasurableSpace α} [TopologicalSpace ε] [ESeminormedAddMonoid ε] {p q : ENNReal} {μ : Measure α} {f g : αε} [NoAtoms μ] [ContinuousAdd ε] (hf : MemLorentz f p q μ) (hg : MemLorentz g p q μ) :
      MemLorentz (f + g) p q μ
      theorem MeasureTheory.eLorentzNorm_add_le_of_disjoint_support {α : Type u_1} {ε : Type u_2} {m : MeasurableSpace α} [TopologicalSpace ε] [ESeminormedAddMonoid ε] {p q : ENNReal} {μ : Measure α} {f g : αε} (h : Disjoint (Function.support f) (Function.support g)) (hg : AEStronglyMeasurable g μ) :
      eLorentzNorm (f + g) p q μ LpAddConst p * LpAddConst q * (eLorentzNorm f p q μ + eLorentzNorm g p q μ)