Documentation

Carleson.ToMathlib.WeakType

The distribution function d_f #

def MeasureTheory.distribution {α : Type u_1} {ε : Type u_3} {m : MeasurableSpace α} [ENorm ε] (f : αε) (t : ENNReal) (μ : Measure α) :

The distribution function of a function f. Todo: rename to something more Mathlib-appropriate.

Equations
Instances For
    @[simp]
    theorem MeasureTheory.distibution_top {α : Type u_1} {ε : Type u_3} {m : MeasurableSpace α} [ENorm ε] (f : αε) (μ : Measure α) :
    theorem MeasureTheory.distribution_mono_right {α : Type u_1} {ε : Type u_3} {m : MeasurableSpace α} {μ : Measure α} {t s : ENNReal} [ENorm ε] {f : αε} (h : t s) :
    theorem MeasureTheory.distribution_mono_right' {α : Type u_1} {ε : Type u_3} {m : MeasurableSpace α} {μ : Measure α} [ENorm ε] {f : αε} :
    Antitone fun (t : ENNReal) => distribution f t μ
    theorem MeasureTheory.distribution_measurable₀ {α : Type u_1} {ε : Type u_3} {m : MeasurableSpace α} {μ : Measure α} [ENorm ε] {f : αε} :
    Measurable fun (t : ENNReal) => distribution f t μ
    theorem MeasureTheory.distribution_measurable {α : Type u_1} {α' : Type u_2} {ε : Type u_3} {m : MeasurableSpace α} {m✝ : MeasurableSpace α'} {μ : Measure α} [ENorm ε] {f : αε} {g : α'ENNReal} (hg : Measurable g) :
    Measurable fun (y : α') => distribution f (g y) μ
    theorem MeasureTheory.distribution_toReal_le {α : Type u_1} {m : MeasurableSpace α} {μ : Measure α} {t : ENNReal} {f : αENNReal} :
    theorem MeasureTheory.distribution_toReal_eq {α : Type u_1} {m : MeasurableSpace α} {μ : Measure α} {t : ENNReal} {f : αENNReal} (hf : ∀ᵐ (x : α) μ, f x ) :
    theorem MeasureTheory.distribution_add_le_of_enorm {α : Type u_1} {ε : Type u_3} {m : MeasurableSpace α} {μ : Measure α} {t s : ENNReal} [ENorm ε] {f g₁ g₂ : αε} {A : ENNReal} (h : ∀ᵐ (x : α) μ, f x‖ₑ A * (g₁ x‖ₑ + g₂ x‖ₑ)) :
    distribution f (A * (t + s)) μ distribution g₁ t μ + distribution g₂ s μ
    theorem MeasureTheory.approx_above_superset {α : Type u_1} {ε : Type u_3} [ENorm ε] {f : αε} (t₀ : ENNReal) :
    ⋃ (n : ), (fun (n : ) => {x : α | t₀ + (↑n)⁻¹ < f x‖ₑ}) n = {x : α | t₀ < f x‖ₑ}
    theorem MeasureTheory.tendsto_measure_iUnion_distribution {α : Type u_1} {ε : Type u_3} {m : MeasurableSpace α} {μ : Measure α} [ENorm ε] {f : αε} (t₀ : ENNReal) :
    Filter.Tendsto (μ fun (n : ) => {x : α | t₀ + (↑n)⁻¹ < f x‖ₑ}) Filter.atTop (nhds (μ {x : α | t₀ < f x‖ₑ}))
    theorem MeasureTheory.select_neighborhood_distribution {α : Type u_1} {ε : Type u_3} {m : MeasurableSpace α} {μ : Measure α} [ENorm ε] {f : αε} (t₀ l : ENNReal) (hu : l < distribution f t₀ μ) :
    ∃ (n : ), l < distribution f (t₀ + (↑n)⁻¹) μ
    theorem MeasureTheory.continuousWithinAt_distribution {α : Type u_1} {ε : Type u_3} {m : MeasurableSpace α} {μ : Measure α} [ENorm ε] {f : αε} (t₀ : ENNReal) :
    ContinuousWithinAt (fun (x : ENNReal) => distribution f x μ) (Set.Ioi t₀) t₀
    theorem MeasureTheory.distribution_pow {α : Type u_1} {m : MeasurableSpace α} (ε : Type u_12) [SeminormedRing ε] [NormOneClass ε] [NormMulClass ε] (f : αε) (t : ENNReal) (μ : Measure α) {n : } (hn : n 0) :
    distribution (f ^ n) (t ^ n) μ = distribution f t μ
    def MeasureTheory.wnorm' {α : Type u_1} {ε : Type u_3} {m : MeasurableSpace α} [ENorm ε] (f : αε) (p : ) (μ : Measure α) :

    The weak L^p norm of a function, for p < ∞

    Equations
    Instances For
      theorem MeasureTheory.wnorm'_zero {α : Type u_1} {ε : Type u_3} {m : MeasurableSpace α} [ENorm ε] (f : αε) (μ : Measure α) :
      wnorm' f 0 μ =
      theorem MeasureTheory.wnorm'_toReal_le {α : Type u_1} {m : MeasurableSpace α} {μ : Measure α} {f : αENNReal} {p : } (hp : 0 p) :
      theorem MeasureTheory.wnorm'_toReal_eq {α : Type u_1} {m : MeasurableSpace α} {μ : Measure α} {f : αENNReal} {p : } (hf : ∀ᵐ (x : α) μ, f x ) :
      wnorm' (ENNReal.toReal f) p μ = wnorm' f p μ
      def MeasureTheory.wnorm {α : Type u_1} {ε : Type u_3} {m : MeasurableSpace α} [ENorm ε] (f : αε) (p : ENNReal) (μ : Measure α) :

      The weak L^p norm of a function.

      Equations
      Instances For
        @[simp]
        theorem MeasureTheory.wnorm_zero {α : Type u_1} {ε : Type u_3} {m : MeasurableSpace α} {μ : Measure α} [ENorm ε] {f : αε} :
        wnorm f 0 μ =
        @[simp]
        theorem MeasureTheory.wnorm_top {α : Type u_1} {ε : Type u_3} {m : MeasurableSpace α} {μ : Measure α} [ENorm ε] {f : αε} :
        theorem MeasureTheory.wnorm_ne_top {α : Type u_1} {ε : Type u_3} {m : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [ENorm ε] {f : αε} (h : p ) :
        wnorm f p μ = wnorm' f p.toReal μ
        theorem MeasureTheory.wnorm_coe {α : Type u_1} {ε : Type u_3} {m : MeasurableSpace α} {μ : Measure α} [ENorm ε] {f : αε} {p : NNReal} :
        wnorm f (↑p) μ = wnorm' f (↑p) μ
        theorem MeasureTheory.wnorm_ofReal {α : Type u_1} {ε : Type u_3} {m : MeasurableSpace α} {μ : Measure α} [ENorm ε] {f : αε} {p : } (hp : 0 p) :
        wnorm f (ENNReal.ofReal p) μ = wnorm' f p μ
        theorem MeasureTheory.wnorm_toReal_le {α : Type u_1} {m : MeasurableSpace α} {μ : Measure α} {f : αENNReal} {p : ENNReal} :
        wnorm (ENNReal.toReal f) p μ wnorm f p μ
        theorem MeasureTheory.wnorm_toReal_eq {α : Type u_1} {m : MeasurableSpace α} {μ : Measure α} {f : αENNReal} {p : ENNReal} (hf : ∀ᵐ (x : α) μ, f x ) :
        wnorm (ENNReal.toReal f) p μ = wnorm f p μ
        def MeasureTheory.MemWLp {α : Type u_1} {ε : Type u_3} {m : MeasurableSpace α} [ENorm ε] [TopologicalSpace ε] (f : αε) (p : ENNReal) (μ : Measure α) :

        A function is in weak-L^p if it is (strongly a.e.)-measurable and has finite weak L^p norm.

        Equations
        Instances For
          theorem MeasureTheory.MemWLp_zero {α : Type u_1} {ε : Type u_3} {m : MeasurableSpace α} {μ : Measure α} [ENorm ε] {f : αε} [TopologicalSpace ε] :
          ¬MemWLp f 0 μ
          theorem MeasureTheory.MemWLp.aeStronglyMeasurable {α : Type u_1} {ε : Type u_3} {m : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [ENorm ε] {f : αε} [TopologicalSpace ε] (hf : MemWLp f p μ) :
          theorem MeasureTheory.MemWLp.wnorm_lt_top {α : Type u_1} {ε : Type u_3} {m : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [ENorm ε] {f : αε} [TopologicalSpace ε] (hf : MemWLp f p μ) :
          wnorm f p μ <
          theorem MeasureTheory.MemWLp.ennreal_toReal {α : Type u_1} {m : MeasurableSpace α} {p : ENNReal} {μ : Measure α} {f : αENNReal} (hf : MemWLp f p μ) :
          theorem MeasureTheory.MemWLp.ae_ne_top {α : Type u_1} {ε : Type u_3} {m : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [ENorm ε] {f : αε} [TopologicalSpace ε] (hf : MemWLp f p μ) :
          ∀ᵐ (x : α) μ, f x‖ₑ

          If a function f is MemWLp, then its norm is almost everywhere finite.

          theorem MeasureTheory.distribution_le {α : Type u_1} {ε : Type u_3} {m : MeasurableSpace α} [TopologicalSpace ε] [ContinuousENorm ε] {f : αε} [MeasurableSpace ε] [OpensMeasurableSpace ε] {c : ENNReal} (hc : c 0) {μ : Measure α} (hf : AEMeasurable f μ) :
          distribution f c μ c⁻¹ * ∫⁻ (y : α), f y‖ₑ μ
          theorem MeasureTheory.wnorm'_le_eLpNorm' {α : Type u_1} {ε : Type u_3} {m : MeasurableSpace α} {μ : Measure α} [TopologicalSpace ε] [ContinuousENorm ε] {f : αε} (hf : AEStronglyMeasurable f μ) {p : } (p0 : 0 < p) :
          wnorm' f p μ eLpNorm' f p μ
          theorem MeasureTheory.distribution_lt_top {α : Type u_1} {ε : Type u_3} {m : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [TopologicalSpace ε] [ContinuousENorm ε] {f : αε} (hf : MemLp f p μ) (p_pos : 0 < p) (p_ne_top : p ) {t : NNReal} (ht : 0 < t) :
          distribution f (↑t) μ <
          theorem MeasureTheory.wnorm_le_eLpNorm {α : Type u_1} {ε : Type u_3} {m : MeasurableSpace α} {μ : Measure α} [TopologicalSpace ε] [ContinuousENorm ε] {f : αε} (hf : AEStronglyMeasurable f μ) {p : ENNReal} (hp : 0 < p) :
          wnorm f p μ eLpNorm f p μ
          theorem MeasureTheory.MemLp.memWLp {α : Type u_1} {ε : Type u_3} {m : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [TopologicalSpace ε] [ContinuousENorm ε] {f : αε} (hp : 0 < p) (hf : MemLp f p μ) :
          MemWLp f p μ
          def MeasureTheory.HasWeakType {α : Type u_1} {α' : Type u_2} {ε₁ : Type u_4} {ε₂ : Type u_5} {m : MeasurableSpace α} {m✝ : MeasurableSpace α'} [ENorm ε₁] [ENorm ε₂] [TopologicalSpace ε₁] [TopologicalSpace ε₂] (T : (αε₁)α'ε₂) (p p' : ENNReal) (μ : Measure α) (ν : Measure α') (c : ENNReal) :

          An operator has weak type (p, q) if it is bounded as a map from L^p to weak L^q. HasWeakType T p p' μ ν c means that T has weak type (p, p') w.r.t. measures μ, ν and constant c.

          Equations
          • One or more equations did not get rendered due to their size.
          Instances For
            def MeasureTheory.HasBoundedWeakType {ε₁ : Type u_4} {ε₂ : Type u_5} [ENorm ε₁] [ENorm ε₂] [TopologicalSpace ε₁] [TopologicalSpace ε₂] {α : Type u_12} {α' : Type u_13} [Zero ε₁] {_x : MeasurableSpace α} {_x' : MeasurableSpace α'} (T : (αε₁)α'ε₂) (p p' : ENNReal) (μ : Measure α) (ν : Measure α') (c : ENNReal) :

            A weaker version of HasWeakType.

            Equations
            • One or more equations did not get rendered due to their size.
            Instances For
              def MeasureTheory.HasStrongType {ε₁ : Type u_4} {ε₂ : Type u_5} [ENorm ε₁] [ENorm ε₂] [TopologicalSpace ε₁] [TopologicalSpace ε₂] {α : Type u_12} {α' : Type u_13} {_x : MeasurableSpace α} {_x' : MeasurableSpace α'} (T : (αε₁)α'ε₂) (p p' : ENNReal) (μ : Measure α) (ν : Measure α') (c : ENNReal) :

              An operator has strong type (p, q) if it is bounded as an operator on L^p → L^q. HasStrongType T p p' μ ν c means that T has strong type (p, p') w.r.t. measures μ, ν and constant c.

              Equations
              • One or more equations did not get rendered due to their size.
              Instances For
                def MeasureTheory.HasBoundedStrongType {ε₁ : Type u_4} {ε₂ : Type u_5} [ENorm ε₁] [ENorm ε₂] [TopologicalSpace ε₁] [TopologicalSpace ε₂] {α : Type u_12} {α' : Type u_13} [Zero ε₁] {_x : MeasurableSpace α} {_x' : MeasurableSpace α'} (T : (αε₁)α'ε₂) (p p' : ENNReal) (μ : Measure α) (ν : Measure α') (c : ENNReal) :

                A weaker version of HasStrongType. This is the same as HasStrongType if T is continuous w.r.t. the L^2 norm, but weaker in general.

                Equations
                • One or more equations did not get rendered due to their size.
                Instances For

                  Lemmas about HasWeakType #

                  theorem MeasureTheory.HasWeakType.memWLp {α : Type u_1} {α' : Type u_2} {ε₁ : Type u_4} {ε₂ : Type u_5} {m : MeasurableSpace α} {m✝ : MeasurableSpace α'} {p p' c : ENNReal} {μ : Measure α} {ν : Measure α'} {T : (αε₁)α'ε₂} [TopologicalSpace ε₁] [ContinuousENorm ε₁] [TopologicalSpace ε₂] [ContinuousENorm ε₂] {f₁ : αε₁} (h : HasWeakType T p p' μ ν c) (hf₁ : MemLp f₁ p μ) (hc : c < := by finiteness) :
                  MemWLp (T f₁) p' ν
                  theorem MeasureTheory.HasWeakType.toReal {α : Type u_1} {α' : Type u_2} {ε₁ : Type u_4} {m : MeasurableSpace α} {m✝ : MeasurableSpace α'} {p p' c : ENNReal} {μ : Measure α} {ν : Measure α'} [TopologicalSpace ε₁] [ContinuousENorm ε₁] {T : (αε₁)α'ENNReal} (h : HasWeakType T p p' μ ν c) :
                  HasWeakType (fun (x1 : αε₁) (x2 : α') => (T x1 x2).toReal) p p' μ ν c
                  theorem MeasureTheory.hasWeakType_toReal_iff {α : Type u_1} {α' : Type u_2} {ε₁ : Type u_4} {m : MeasurableSpace α} {m✝ : MeasurableSpace α'} {p p' c : ENNReal} {μ : Measure α} {ν : Measure α'} [TopologicalSpace ε₁] [ContinuousENorm ε₁] {T : (αε₁)α'ENNReal} (hT : ∀ (f : αε₁), MemLp f p μ∀ᵐ (x : α') ν, T f x ) :
                  HasWeakType (fun (x1 : αε₁) (x2 : α') => (T x1 x2).toReal) p p' μ ν c HasWeakType T p p' μ ν c

                  Lemmas about HasBoundedWeakType #

                  theorem MeasureTheory.HasBoundedWeakType.memWLp {α : Type u_1} {α' : Type u_2} {ε₁ : Type u_4} {ε₂ : Type u_5} {m : MeasurableSpace α} {m✝ : MeasurableSpace α'} {p p' c : ENNReal} {μ : Measure α} {ν : Measure α'} {T : (αε₁)α'ε₂} [TopologicalSpace ε₁] [ENormedAddMonoid ε₁] [TopologicalSpace ε₂] [ENorm ε₂] {f₁ : αε₁} (h : HasBoundedWeakType T p p' μ ν c) (hf₁ : BoundedFiniteSupport f₁ μ) (hc : c < := by finiteness) :
                  MemWLp (T f₁) p' ν
                  theorem MeasureTheory.HasWeakType.hasBoundedWeakType {α : Type u_1} {α' : Type u_2} {ε₁ : Type u_4} {ε₂ : Type u_5} {m : MeasurableSpace α} {m✝ : MeasurableSpace α'} {p p' c : ENNReal} {μ : Measure α} {ν : Measure α'} {T : (αε₁)α'ε₂} [TopologicalSpace ε₁] [ENormedAddMonoid ε₁] [TopologicalSpace ε₂] [ENorm ε₂] (h : HasWeakType T p p' μ ν c) :
                  HasBoundedWeakType T p p' μ ν c

                  Lemmas about HasStrongType #

                  theorem MeasureTheory.HasStrongType.memLp {α : Type u_1} {α' : Type u_2} {ε₁ : Type u_4} {ε₂ : Type u_5} {m : MeasurableSpace α} {m✝ : MeasurableSpace α'} {p p' c : ENNReal} {μ : Measure α} {ν : Measure α'} {T : (αε₁)α'ε₂} [TopologicalSpace ε₁] [ContinuousENorm ε₁] [TopologicalSpace ε₂] [ContinuousENorm ε₂] {f₁ : αε₁} (h : HasStrongType T p p' μ ν c) (hf₁ : MemLp f₁ p μ) (hc : c < := by finiteness) :
                  MemLp (T f₁) p' ν
                  theorem MeasureTheory.HasStrongType.hasWeakType {α : Type u_1} {α' : Type u_2} {ε₁ : Type u_4} {ε₂ : Type u_5} {m : MeasurableSpace α} {m✝ : MeasurableSpace α'} {p p' c : ENNReal} {μ : Measure α} {ν : Measure α'} {T : (αε₁)α'ε₂} [TopologicalSpace ε₁] [ContinuousENorm ε₁] [TopologicalSpace ε₂] [ContinuousENorm ε₂] (hp' : 0 < p') (h : HasStrongType T p p' μ ν c) :
                  HasWeakType T p p' μ ν c
                  theorem MeasureTheory.HasStrongType.toReal {α : Type u_1} {α' : Type u_2} {ε₁ : Type u_4} {m : MeasurableSpace α} {m✝ : MeasurableSpace α'} {p p' c : ENNReal} {μ : Measure α} {ν : Measure α'} [TopologicalSpace ε₁] [ContinuousENorm ε₁] {T : (αε₁)α'ENNReal} (h : HasStrongType T p p' μ ν c) :
                  HasStrongType (fun (x1 : αε₁) (x2 : α') => (T x1 x2).toReal) p p' μ ν c
                  theorem MeasureTheory.hasStrongType_toReal_iff {α : Type u_1} {α' : Type u_2} {ε₁ : Type u_4} {m : MeasurableSpace α} {m✝ : MeasurableSpace α'} {p p' c : ENNReal} {μ : Measure α} {ν : Measure α'} [TopologicalSpace ε₁] [ContinuousENorm ε₁] {T : (αε₁)α'ENNReal} (hT : ∀ (f : αε₁), MemLp f p μ∀ᵐ (x : α') ν, T f x ) :
                  HasStrongType (fun (x1 : αε₁) (x2 : α') => (T x1 x2).toReal) p p' μ ν c HasStrongType T p p' μ ν c

                  Lemmas about HasBoundedStrongType #

                  theorem MeasureTheory.HasBoundedStrongType.memLp {α : Type u_1} {α' : Type u_2} {ε₁ : Type u_4} {ε₂ : Type u_5} {m : MeasurableSpace α} {m✝ : MeasurableSpace α'} {p p' c : ENNReal} {μ : Measure α} {ν : Measure α'} {T : (αε₁)α'ε₂} [TopologicalSpace ε₁] [ENormedAddMonoid ε₁] [TopologicalSpace ε₂] [ContinuousENorm ε₂] {f₁ : αε₁} (h : HasBoundedStrongType T p p' μ ν c) (hf₁ : BoundedFiniteSupport f₁ μ) (hc : c < := by finiteness) :
                  MemLp (T f₁) p' ν
                  theorem MeasureTheory.HasStrongType.hasBoundedStrongType {α : Type u_1} {α' : Type u_2} {ε₁ : Type u_4} {ε₂ : Type u_5} {m : MeasurableSpace α} {m✝ : MeasurableSpace α'} {p p' c : ENNReal} {μ : Measure α} {ν : Measure α'} {T : (αε₁)α'ε₂} [TopologicalSpace ε₁] [ENormedAddMonoid ε₁] [TopologicalSpace ε₂] [ContinuousENorm ε₂] (h : HasStrongType T p p' μ ν c) :
                  HasBoundedStrongType T p p' μ ν c
                  theorem MeasureTheory.HasBoundedStrongType.hasBoundedWeakType {α : Type u_1} {α' : Type u_2} {ε₁ : Type u_4} {ε₂ : Type u_5} {m : MeasurableSpace α} {m✝ : MeasurableSpace α'} {p p' c : ENNReal} {μ : Measure α} {ν : Measure α'} {T : (αε₁)α'ε₂} [TopologicalSpace ε₁] [ENormedAddMonoid ε₁] [TopologicalSpace ε₂] [ContinuousENorm ε₂] (hp' : 0 < p') (h : HasBoundedStrongType T p p' μ ν c) :
                  HasBoundedWeakType T p p' μ ν c
                  theorem MeasureTheory.HasBoundedStrongType.const_smul {α : Type u_1} {α' : Type u_2} {ε₁ : Type u_4} {m : MeasurableSpace α} {m✝ : MeasurableSpace α'} {p p' c : ENNReal} {μ : Measure α} {ν : Measure α'} [TopologicalSpace ε₁] [ENormedAddMonoid ε₁] {T : (αε₁)α'ENNReal} (h : HasBoundedStrongType T p p' μ ν c) (r : NNReal) :
                  HasBoundedStrongType (r T) p p' μ ν (r c)
                  theorem MeasureTheory.distribution_mono_left {α : Type u_1} {ε : Type u_3} {m : MeasurableSpace α} {μ : Measure α} {t : ENNReal} {f g : αε} [ENorm ε] (h : ∀ᵐ (x : α) μ, f x‖ₑ g x‖ₑ) :
                  theorem MeasureTheory.distribution_mono {α : Type u_1} {ε : Type u_3} {m : MeasurableSpace α} {μ : Measure α} {t s : ENNReal} {f g : αε} [ENorm ε] (h₁ : ∀ᵐ (x : α) μ, f x‖ₑ g x‖ₑ) (h₂ : t s) :
                  theorem MeasureTheory.distribution_snormEssSup {α : Type u_1} {ε : Type u_3} {m : MeasurableSpace α} {μ : Measure α} {f : αε} [ENorm ε] :
                  theorem MeasureTheory.distribution_add_le' {α : Type u_1} {ε : Type u_3} {m : MeasurableSpace α} {μ : Measure α} {t s : ENNReal} {f : αε} [ENorm ε] {A : ENNReal} {g₁ g₂ : αε} (h : ∀ᵐ (x : α) μ, f x‖ₑ A * (g₁ x‖ₑ + g₂ x‖ₑ)) :
                  distribution f (A * (t + s)) μ distribution g₁ t μ + distribution g₂ s μ
                  theorem MeasureTheory.distribution_add_le {α : Type u_1} {ε : Type u_3} {m : MeasurableSpace α} {μ : Measure α} {t s : ENNReal} [TopologicalSpace ε] [ENormedAddMonoid ε] {f g : αε} :
                  distribution (f + g) (t + s) μ distribution f t μ + distribution g s μ
                  theorem MeasureTheory.distribution_zero {α : Type u_1} {ε : Type u_3} {m : MeasurableSpace α} {μ : Measure α} {t : ENNReal} [TopologicalSpace ε] [ENormedAddMonoid ε] {f : αε} (h : f =ᶠ[ae μ] 0) :
                  distribution f t μ = 0
                  theorem MeasureTheory.distribution_indicator_const {α : Type u_1} {ε : Type u_3} {m : MeasurableSpace α} {μ : Measure α} {t : ENNReal} [TopologicalSpace ε] [ENormedAddMonoid ε] {s : Set α} {a : ε} :
                  distribution (s.indicator (Function.const α a)) t μ = (Set.Iio a‖ₑ).indicator (fun (x : ENNReal) => μ s) t
                  theorem MeasureTheory.distribution_add {α : Type u_1} {ε : Type u_3} {m : MeasurableSpace α} {μ : Measure α} {t : ENNReal} [TopologicalSpace ε] [ENormedAddMonoid ε] {f g : αε} (h : Disjoint (Function.support f) (Function.support g)) (hg : StronglyMeasurable g) :
                  distribution (f + g) t μ = distribution f t μ + distribution g t μ
                  theorem MeasureTheory.distribution_indicator_add_of_support_subset {α : Type u_1} {ε : Type u_3} {m : MeasurableSpace α} {μ : Measure α} {t : ENNReal} [TopologicalSpace ε] [ENormedAddMonoid ε] (enorm_add : ∀ (a b : ε), a + b‖ₑ = a‖ₑ + b‖ₑ) {f : αε} {c : ε} (hc : c‖ₑ ) {s : Set α} (hfs : Function.support f s) :
                  theorem MeasureTheory.distribution_indicator_add_of_support_subset_ennreal {α : Type u_1} {m : MeasurableSpace α} {μ : Measure α} {t : ENNReal} {f : αENNReal} {c : ENNReal} (hc : c ) {s : Set α} (hfs : Function.support f s) :
                  distribution (f + s.indicator (Function.const α c)) t μ = if t < c then μ s else distribution f (t - c) μ
                  theorem MeasureTheory.distribution_indicator_add_of_support_subset_nnreal {α : Type u_1} {m : MeasurableSpace α} {μ : Measure α} {t : ENNReal} {f : αNNReal} {c : NNReal} {s : Set α} (hfs : Function.support f s) :
                  distribution (f + s.indicator (Function.const α c)) t μ = if t < c then μ s else distribution f (t - c) μ
                  theorem MeasureTheory.distribution_smul_left {α : Type u_1} {m : MeasurableSpace α} {μ : Measure α} {t : ENNReal} {ε' : Type u_13} [TopologicalSpace ε'] [ENormedSpace ε'] {f : αε'} {c : NNReal} (hc : c 0) :
                  distribution (c f) t μ = distribution f (t / c‖ₑ) μ
                  theorem MeasureTheory.distribution_smul_left' {α : Type u_1} {𝕜 : Type u_7} {E : Type u_8} {m : MeasurableSpace α} {μ : Measure α} [NontriviallyNormedField 𝕜] {t : ENNReal} [NormedAddCommGroup E] [MulActionWithZero 𝕜 E] [NormSMulClass 𝕜 E] {f : αE} {c : 𝕜} (hc : c 0) :
                  distribution (c f) t μ = distribution f (t / c‖ₑ) μ
                  theorem MeasureTheory.HasStrongType.const_smul {α : Type u_1} {α' : Type u_2} {m : MeasurableSpace α} {m✝ : MeasurableSpace α'} {p p' : ENNReal} {μ : Measure α} {ν : Measure α'} {ε : Type u_12} {ε' : Type u_13} [TopologicalSpace ε] [ENorm ε] [TopologicalSpace ε'] [ENormedSpace ε'] [ContinuousConstSMul NNReal ε'] {T : (αε)α'ε'} {c : ENNReal} (h : HasStrongType T p p' μ ν c) (k : NNReal) :
                  HasStrongType (k T) p p' μ ν (k‖ₑ * c)
                  theorem MeasureTheory.HasStrongType.const_smul' {α : Type u_1} {α' : Type u_2} {m : MeasurableSpace α} {m✝ : MeasurableSpace α'} {p p' : ENNReal} {μ : Measure α} {ν : Measure α'} {ε : Type u_12} [TopologicalSpace ε] [ENorm ε] {𝕜 : Type u_15} {E' : Type u_16} [NormedRing 𝕜] [NormedAddCommGroup E'] [MulActionWithZero 𝕜 E'] [IsBoundedSMul 𝕜 E'] {T : (αε)α'E'} {c : ENNReal} (h : HasStrongType T p p' μ ν c) (k : 𝕜) :
                  HasStrongType (k T) p p' μ ν (k‖ₑ * c)
                  theorem MeasureTheory.HasStrongType.const_mul {α : Type u_1} {α' : Type u_2} {m : MeasurableSpace α} {m✝ : MeasurableSpace α'} {p p' : ENNReal} {μ : Measure α} {ν : Measure α'} {ε : Type u_12} [TopologicalSpace ε] [ENorm ε] {T : (αε)α'ENNReal} {c : ENNReal} (h : HasStrongType T p p' μ ν c) (e : NNReal) :
                  HasStrongType (fun (f : αε) (x : α') => e * T f x) p p' μ ν (e‖ₑ * c)
                  theorem MeasureTheory.HasStrongType.const_mul' {α : Type u_1} {α' : Type u_2} {m : MeasurableSpace α} {m✝ : MeasurableSpace α'} {p p' : ENNReal} {μ : Measure α} {ν : Measure α'} {ε : Type u_12} [TopologicalSpace ε] [ENorm ε] {E' : Type u_15} [NormedRing E'] {T : (αε)α'E'} {c : ENNReal} (h : HasStrongType T p p' μ ν c) (e : E') :
                  HasStrongType (fun (f : αε) (x : α') => e * T f x) p p' μ ν (e‖ₑ * c)
                  theorem MeasureTheory.wnorm_const_smul_le {α : Type u_1} {m : MeasurableSpace α} {p : ENNReal} {μ : Measure α} {ε' : Type u_13} [TopologicalSpace ε'] [ENormedSpace ε'] (hp : p 0) {f : αε'} (k : NNReal) :
                  wnorm (k f) p μ k‖ₑ * wnorm f p μ
                  theorem MeasureTheory.wnorm_const_smul_le' {α : Type u_1} {𝕜 : Type u_7} {E : Type u_8} {m : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E] [MulActionWithZero 𝕜 E] [NormSMulClass 𝕜 E] [IsBoundedSMul 𝕜 E] (hp : p 0) {f : αE} (k : 𝕜) :
                  wnorm (k f) p μ k‖ₑ * wnorm f p μ
                  theorem MeasureTheory.HasWeakType.const_smul {α : Type u_1} {α' : Type u_2} {m : MeasurableSpace α} {m✝ : MeasurableSpace α'} {p p' : ENNReal} {μ : Measure α} {ν : Measure α'} {ε : Type u_12} {ε' : Type u_13} [TopologicalSpace ε] [ENorm ε] [TopologicalSpace ε'] [ENormedSpace ε'] [ContinuousConstSMul NNReal ε'] {T : (αε)α'ε'} (hp' : p' 0) {c : ENNReal} (h : HasWeakType T p p' μ ν c) (k : NNReal) :
                  HasWeakType (k T) p p' μ ν (k * c)
                  theorem MeasureTheory.HasWeakType.const_smul' {α : Type u_1} {α' : Type u_2} {𝕜 : Type u_7} {m : MeasurableSpace α} {m✝ : MeasurableSpace α'} {p p' : ENNReal} {μ : Measure α} {ν : Measure α'} [NontriviallyNormedField 𝕜] {ε : Type u_12} [TopologicalSpace ε] [ENorm ε] {E' : Type u_14} [NormedAddCommGroup E'] [MulActionWithZero 𝕜 E'] [NormSMulClass 𝕜 E'] [IsBoundedSMul 𝕜 E'] {T : (αε)α'E'} (hp' : p' 0) {c : ENNReal} (h : HasWeakType T p p' μ ν c) (k : 𝕜) :
                  HasWeakType (k T) p p' μ ν (k‖ₑ * c)
                  theorem MeasureTheory.HasWeakType.const_mul {α : Type u_1} {α' : Type u_2} {m : MeasurableSpace α} {m✝ : MeasurableSpace α'} {p p' : ENNReal} {μ : Measure α} {ν : Measure α'} {ε : Type u_12} [TopologicalSpace ε] [ENorm ε] {T : (αε)α'ENNReal} (hp' : p' 0) {c : ENNReal} (h : HasWeakType T p p' μ ν c) (e : NNReal) :
                  HasWeakType (fun (f : αε) (x : α') => e * T f x) p p' μ ν (e * c)
                  theorem MeasureTheory.HasWeakType.const_mul' {α : Type u_1} {α' : Type u_2} {𝕜 : Type u_7} {m : MeasurableSpace α} {m✝ : MeasurableSpace α'} {p p' : ENNReal} {μ : Measure α} {ν : Measure α'} [NontriviallyNormedField 𝕜] {ε : Type u_12} [TopologicalSpace ε] [ENorm ε] {T : (αε)α'𝕜} (hp' : p' 0) {c : ENNReal} (h : HasWeakType T p p' μ ν c) (e : 𝕜) :
                  HasWeakType (fun (f : αε) (x : α') => e * T f x) p p' μ ν (e‖ₑ * c)
                  theorem ContinuousLinearMap.distribution_le {α : Type u_1} {𝕜 : Type u_7} {E₁ : Type u_9} {E₂ : Type u_10} {E₃ : Type u_11} {m : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NontriviallyNormedField 𝕜] {t s : ENNReal} [NormedAddCommGroup E₁] [NormedSpace 𝕜 E₁] [NormedAddCommGroup E₂] [NormedSpace 𝕜 E₂] [NormedAddCommGroup E₃] [NormedSpace 𝕜 E₃] {f : αE₁} {g : αE₂} (L : E₁ →L[𝕜] E₂ →L[𝕜] E₃) :
                  MeasureTheory.distribution (fun (x : α) => (L (f x)) (g x)) (L‖ₑ * t * s) μ MeasureTheory.distribution f t μ + MeasureTheory.distribution g s μ
                  theorem MeasureTheory.lintegral_norm_pow_eq_distribution {α : Type u_1} {ε : Type u_3} {m : MeasurableSpace α} {μ : Measure α} [TopologicalSpace ε] [ContinuousENorm ε] {f : αε} (hf : AEStronglyMeasurable f μ) {p : } (hp : 0 < p) :
                  ∫⁻ (x : α), f x‖ₑ ^ p μ = ∫⁻ (t : ) in Set.Ioi 0, ENNReal.ofReal (p * t ^ (p - 1)) * distribution f (ENNReal.ofReal t) μ

                  The layer-cake theorem, or Cavalieri's principle for functions into a space with a continuous enorm.

                  theorem MeasureTheory.eLpNorm_pow_eq_distribution {α : Type u_1} {ε : Type u_3} {m : MeasurableSpace α} {μ : Measure α} [TopologicalSpace ε] [ContinuousENorm ε] {f : αε} (hf : AEStronglyMeasurable f μ) {p : NNReal} (hp : 0 < p) :
                  eLpNorm f (↑p) μ ^ p = ∫⁻ (t : ) in Set.Ioi 0, p * ENNReal.ofReal (t ^ (p - 1)) * distribution f (ENNReal.ofReal t) μ

                  The layer-cake theorem, or Cavalieri's principle, written using eLpNorm.

                  theorem MeasureTheory.eLpNorm_eq_distribution {α : Type u_1} {ε : Type u_3} {m : MeasurableSpace α} {μ : Measure α} [TopologicalSpace ε] [ContinuousENorm ε] {f : αε} (hf : AEStronglyMeasurable f μ) {p : } (hp : 0 < p) :

                  The layer-cake theorem, or Cavalieri's principle, written using eLpNorm, without taking powers.

                  theorem MeasureTheory.lintegral_pow_mul_distribution {α : Type u_1} {ε : Type u_3} {m : MeasurableSpace α} {μ : Measure α} [TopologicalSpace ε] [ContinuousENorm ε] {f : αε} (hf : AEStronglyMeasurable f μ) {p : } (hp : -1 < p) :