Documentation

Carleson.ToMathlib.WeakType

theorem ENNNorm_absolute_homogeneous {𝕜 : Type u_2} {E : Type u_3} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E] [NormedSpace 𝕜 E] {c : 𝕜} (z : E) :
theorem ENNNorm_add_le {E : Type u_3} [NormedAddCommGroup E] (y z : E) :
theorem measure_mono_ae' {α : Type u_1} {m : MeasurableSpace α} {μ : MeasureTheory.Measure α} {A B : Set α} (h : μ (B \ A) = 0) :
μ B μ A
theorem eLpNormEssSup_toReal_eq {α : Type u_1} {m : MeasurableSpace α} {μ : MeasureTheory.Measure α} {f : αENNReal} (hf : ∀ᵐ (x : α) ∂μ, f x ) :
theorem eLpNorm'_toReal_le {α : Type u_1} {m : MeasurableSpace α} {μ : MeasureTheory.Measure α} {f : αENNReal} {p : } (hp : 0 p) :
theorem eLpNorm'_toReal_eq {α : Type u_1} {m : MeasurableSpace α} {μ : MeasureTheory.Measure α} {f : αENNReal} {p : } (hf : ∀ᵐ (x : α) ∂μ, f x ) :
theorem eLpNorm_toReal_eq {α : Type u_1} {m : MeasurableSpace α} {μ : MeasureTheory.Measure α} {p : ENNReal} {f : αENNReal} (hf : ∀ᵐ (x : α) ∂μ, f x ) :

The distribution function d_f #

def MeasureTheory.distribution {α : Type u_1} {ε : Type u_3} {m : MeasurableSpace α} [ENorm ε] (f : αε) (t : ENNReal) (μ : Measure α) :

The distribution function of a function f. Note that unlike the notes, we also define this for t = ∞. Note: we also want to use this for functions with codomain ℝ≥0∞, but for those we just write μ { x | t < f x }

Equations
Instances For
    theorem MeasureTheory.distribution_mono_right {α : Type u_1} {ε : Type u_3} {m : MeasurableSpace α} {μ : Measure α} {t s : ENNReal} [ENorm ε] {f : αε} (h : t s) :
    theorem MeasureTheory.distribution_mono_right' {α : Type u_1} {ε : Type u_3} {m : MeasurableSpace α} {μ : Measure α} [ENorm ε] {f : αε} :
    Antitone fun (t : ENNReal) => distribution f t μ
    theorem MeasureTheory.distribution_measurable₀ {α : Type u_1} {ε : Type u_3} {m : MeasurableSpace α} {μ : Measure α} [ENorm ε] {f : αε} :
    Measurable fun (t : ENNReal) => distribution f t μ
    theorem MeasureTheory.distribution_measurable {α : Type u_1} {α' : Type u_2} {ε : Type u_3} {m : MeasurableSpace α} {m✝ : MeasurableSpace α'} {μ : Measure α} [ENorm ε] {f : αε} {g : α'ENNReal} (hg : Measurable g) :
    Measurable fun (y : α') => distribution f (g y) μ
    theorem MeasureTheory.distribution_toReal_le {α : Type u_1} {m : MeasurableSpace α} {μ : Measure α} {t : ENNReal} {f : αENNReal} :
    theorem MeasureTheory.distribution_toReal_eq {α : Type u_1} {m : MeasurableSpace α} {μ : Measure α} {t : ENNReal} {f : αENNReal} (hf : ∀ᵐ (x : α) ∂μ, f x ) :
    theorem MeasureTheory.distribution_add_le_of_enorm {α : Type u_1} {ε : Type u_3} {m : MeasurableSpace α} {μ : Measure α} {t s : ENNReal} [ENorm ε] {f g₁ g₂ : αε} {A : ENNReal} (h : ∀ᵐ (x : α) ∂μ, f x‖ₑ A * (g₁ x‖ₑ + g₂ x‖ₑ)) :
    distribution f (A * (t + s)) μ distribution g₁ t μ + distribution g₂ s μ
    theorem MeasureTheory.approx_above_superset {α : Type u_1} {ε : Type u_3} [ENorm ε] {f : αε} (t₀ : ENNReal) :
    ⋃ (n : ), (fun (n : ) => {x : α | t₀ + (↑n)⁻¹ < f x‖ₑ}) n = {x : α | t₀ < f x‖ₑ}
    theorem MeasureTheory.tendsto_measure_iUnion_distribution {α : Type u_1} {ε : Type u_3} {m : MeasurableSpace α} {μ : Measure α} [ENorm ε] {f : αε} (t₀ : ENNReal) :
    Filter.Tendsto (μ fun (n : ) => {x : α | t₀ + (↑n)⁻¹ < f x‖ₑ}) Filter.atTop (nhds (μ {x : α | t₀ < f x‖ₑ}))
    theorem MeasureTheory.select_neighborhood_distribution {α : Type u_1} {ε : Type u_3} {m : MeasurableSpace α} {μ : Measure α} [ENorm ε] {f : αε} (t₀ l : ENNReal) (hu : l < distribution f t₀ μ) :
    ∃ (n : ), l < distribution f (t₀ + (↑n)⁻¹) μ
    theorem MeasureTheory.continuousWithinAt_distribution {α : Type u_1} {ε : Type u_3} {m : MeasurableSpace α} {μ : Measure α} [ENorm ε] {f : αε} (t₀ : ENNReal) :
    ContinuousWithinAt (fun (x : ENNReal) => distribution f x μ) (Set.Ioi t₀) t₀
    def MeasureTheory.wnorm' {α : Type u_1} {ε : Type u_3} {m : MeasurableSpace α} [ENorm ε] (f : αε) (p : ) (μ : Measure α) :

    The weak L^p norm of a function, for p < ∞

    Equations
    Instances For
      theorem MeasureTheory.wnorm'_zero {α : Type u_1} {ε : Type u_3} {m : MeasurableSpace α} [ENorm ε] (f : αε) (μ : Measure α) :
      wnorm' f 0 μ =
      theorem MeasureTheory.wnorm'_toReal_le {α : Type u_1} {m : MeasurableSpace α} {μ : Measure α} {f : αENNReal} {p : } (hp : 0 p) :
      theorem MeasureTheory.wnorm'_toReal_eq {α : Type u_1} {m : MeasurableSpace α} {μ : Measure α} {f : αENNReal} {p : } (hf : ∀ᵐ (x : α) ∂μ, f x ) :
      wnorm' (ENNReal.toReal f) p μ = wnorm' f p μ
      def MeasureTheory.wnorm {α : Type u_1} {ε : Type u_3} {m : MeasurableSpace α} [ENorm ε] (f : αε) (p : ENNReal) (μ : Measure α) :

      The weak L^p norm of a function.

      Equations
      Instances For
        theorem MeasureTheory.wnorm_zero {α : Type u_1} {ε : Type u_3} {m : MeasurableSpace α} {μ : Measure α} [ENorm ε] {f : αε} :
        wnorm f 0 μ =
        @[simp]
        theorem MeasureTheory.wnorm_top {α : Type u_1} {ε : Type u_3} {m : MeasurableSpace α} {μ : Measure α} [ENorm ε] {f : αε} :
        theorem MeasureTheory.wnorm_coe {α : Type u_1} {ε : Type u_3} {m : MeasurableSpace α} {μ : Measure α} [ENorm ε] {f : αε} {p : NNReal} :
        wnorm f (↑p) μ = wnorm' f (↑p) μ
        theorem MeasureTheory.wnorm_ofReal {α : Type u_1} {ε : Type u_3} {m : MeasurableSpace α} {μ : Measure α} [ENorm ε] {f : αε} {p : } (hp : 0 p) :
        wnorm f (ENNReal.ofReal p) μ = wnorm' f p μ
        theorem MeasureTheory.wnorm_toReal_le {α : Type u_1} {m : MeasurableSpace α} {μ : Measure α} {f : αENNReal} {p : ENNReal} :
        wnorm (ENNReal.toReal f) p μ wnorm f p μ
        theorem MeasureTheory.wnorm_toReal_eq {α : Type u_1} {m : MeasurableSpace α} {μ : Measure α} {f : αENNReal} {p : ENNReal} (hf : ∀ᵐ (x : α) ∂μ, f x ) :
        wnorm (ENNReal.toReal f) p μ = wnorm f p μ
        theorem MeasureTheory.wnorm'_le_eLpNorm' {α : Type u_1} {ε : Type u_3} {m : MeasurableSpace α} {μ : Measure α} [ContinuousENorm ε] {f : αε} (hf : AEStronglyMeasurable f μ) {p : } (hp : 1 p) :
        wnorm' f p μ eLpNorm' f p μ
        theorem MeasureTheory.wnorm_le_eLpNorm {α : Type u_1} {ε : Type u_3} {m : MeasurableSpace α} {μ : Measure α} [ContinuousENorm ε] {f : αε} (hf : AEStronglyMeasurable f μ) {p : ENNReal} (hp : 1 p) :
        wnorm f p μ eLpNorm f p μ
        def MeasureTheory.MemWℒp {α : Type u_1} {ε : Type u_3} {m : MeasurableSpace α} [ContinuousENorm ε] (f : αε) (p : ENNReal) (μ : Measure α) :

        A function is in weak-L^p if it is (strongly a.e.)-measurable and has finite weak L^p norm.

        Equations
        Instances For
          theorem MeasureTheory.Memℒp.memWℒp {α : Type u_1} {ε : Type u_3} {m : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [ContinuousENorm ε] {f : αε} (hp : 1 p) (hf : Memℒp f p μ) :
          MemWℒp f p μ
          theorem MeasureTheory.MemWℒp_zero {α : Type u_1} {ε : Type u_3} {m : MeasurableSpace α} {μ : Measure α} [ContinuousENorm ε] {f : αε} :
          ¬MemWℒp f 0 μ
          theorem MeasureTheory.MemWℒp.aeStronglyMeasurable {α : Type u_1} {ε : Type u_3} {m : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [ContinuousENorm ε] {f : αε} (hf : MemWℒp f p μ) :
          theorem MeasureTheory.MemWℒp.wnorm_lt_top {α : Type u_1} {ε : Type u_3} {m : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [ContinuousENorm ε] {f : αε} (hf : MemWℒp f p μ) :
          wnorm f p μ <
          theorem MeasureTheory.MemWℒp.ennreal_toReal {α : Type u_1} {m : MeasurableSpace α} {p : ENNReal} {μ : Measure α} {f : αENNReal} (hf : MemWℒp f p μ) :
          theorem MeasureTheory.MemWℒp.ae_ne_top {α : Type u_1} {ε : Type u_3} {m : MeasurableSpace α} [ContinuousENorm ε] {f : αε} {p : ENNReal} {μ : Measure α} (hf : MemWℒp f p μ) :
          ∀ᵐ (x : α) ∂μ, f x‖ₑ

          If a function f is MemWℒp, then its norm is almost everywhere finite.

          def MeasureTheory.HasWeakType {α : Type u_1} {α' : Type u_2} {ε₁ : Type u_4} {ε₂ : Type u_5} {m : MeasurableSpace α} {m✝ : MeasurableSpace α'} [ContinuousENorm ε₁] [ContinuousENorm ε₂] (T : (αε₁)α'ε₂) (p p' : ENNReal) (μ : Measure α) (ν : Measure α') (c : NNReal) :

          An operator has weak type (p, q) if it is bounded as a map from L^p to weak-L^q. HasWeakType T p p' μ ν c means that T has weak type (p, p') w.r.t. measures μ, ν and constant c.

          Equations
          • One or more equations did not get rendered due to their size.
          Instances For
            def MeasureTheory.HasBoundedWeakType {ε₁ : Type u_4} {ε₂ : Type u_5} [ContinuousENorm ε₁] [ContinuousENorm ε₂] {α : Type u_12} {α' : Type u_13} [Zero ε₁] {_x : MeasurableSpace α} {_x' : MeasurableSpace α'} (T : (αε₁)α'ε₂) (p p' : ENNReal) (μ : Measure α) (ν : Measure α') (c : NNReal) :

            A weaker version of HasWeakType.

            Equations
            • One or more equations did not get rendered due to their size.
            Instances For
              def MeasureTheory.HasStrongType {ε₁ : Type u_4} {ε₂ : Type u_5} [ContinuousENorm ε₁] [ContinuousENorm ε₂] {α : Type u_12} {α' : Type u_13} {_x : MeasurableSpace α} {_x' : MeasurableSpace α'} (T : (αε₁)α'ε₂) (p p' : ENNReal) (μ : Measure α) (ν : Measure α') (c : NNReal) :

              An operator has strong type (p, q) if it is bounded as an operator on L^p → L^q. HasStrongType T p p' μ ν c means that T has strong type (p, p') w.r.t. measures μ, ν and constant c.

              Equations
              • One or more equations did not get rendered due to their size.
              Instances For
                def MeasureTheory.HasBoundedStrongType {ε₁ : Type u_4} {ε₂ : Type u_5} [ContinuousENorm ε₁] [ContinuousENorm ε₂] {α : Type u_12} {α' : Type u_13} [Zero ε₁] {_x : MeasurableSpace α} {_x' : MeasurableSpace α'} (T : (αε₁)α'ε₂) (p p' : ENNReal) (μ : Measure α) (ν : Measure α') (c : NNReal) :

                A weaker version of HasStrongType. This is the same as HasStrongType if T is continuous w.r.t. the L^2 norm, but weaker in general.

                Equations
                • One or more equations did not get rendered due to their size.
                Instances For

                  Lemmas about HasWeakType #

                  theorem MeasureTheory.HasWeakType.memWℒp {α : Type u_1} {α' : Type u_2} {ε₁ : Type u_4} {ε₂ : Type u_5} {m : MeasurableSpace α} {m✝ : MeasurableSpace α'} {p p' : ENNReal} {c : NNReal} {μ : Measure α} {ν : Measure α'} {T : (αε₁)α'ε₂} [ContinuousENorm ε₁] [ContinuousENorm ε₂] {f₁ : αε₁} (h : HasWeakType T p p' μ ν c) (hf₁ : Memℒp f₁ p μ) :
                  MemWℒp (T f₁) p' ν
                  theorem MeasureTheory.HasWeakType.toReal {α : Type u_1} {α' : Type u_2} {ε₁ : Type u_4} {m : MeasurableSpace α} {m✝ : MeasurableSpace α'} {p p' : ENNReal} {c : NNReal} {μ : Measure α} {ν : Measure α'} [ContinuousENorm ε₁] {T : (αε₁)α'ENNReal} (h : HasWeakType T p p' μ ν c) :
                  HasWeakType (fun (x1 : αε₁) (x2 : α') => (T x1 x2).toReal) p p' μ ν c
                  theorem MeasureTheory.toReal_ofReal_preimage' {s : Set ENNReal} :
                  ENNReal.toReal ⁻¹' (ENNReal.ofReal ⁻¹' s) = if s 0 s then s else if 0 s then s {} else s \ {}
                  theorem MeasureTheory.hasWeakType_toReal_iff {α : Type u_1} {α' : Type u_2} {ε₁ : Type u_4} {m : MeasurableSpace α} {m✝ : MeasurableSpace α'} {p p' : ENNReal} {c : NNReal} {μ : Measure α} {ν : Measure α'} [ContinuousENorm ε₁] {T : (αε₁)α'ENNReal} (hT : ∀ (f : αε₁), Memℒp f p μ∀ᵐ (x : α') ∂ν, T f x ) :
                  HasWeakType (fun (x1 : αε₁) (x2 : α') => (T x1 x2).toReal) p p' μ ν c HasWeakType T p p' μ ν c

                  Lemmas about HasBoundedWeakType #

                  theorem MeasureTheory.HasBoundedWeakType.memWℒp {α : Type u_1} {α' : Type u_2} {ε₁ : Type u_4} {ε₂ : Type u_5} {m : MeasurableSpace α} {m✝ : MeasurableSpace α'} {p p' : ENNReal} {c : NNReal} {μ : Measure α} {ν : Measure α'} {T : (αε₁)α'ε₂} [ContinuousENorm ε₁] [ContinuousENorm ε₂] {f₁ : αε₁} [Zero ε₁] (h : HasBoundedWeakType T p p' μ ν c) (hf₁ : Memℒp f₁ p μ) (h2f₁ : eLpNorm f₁ μ < ) (h3f₁ : μ (Function.support f₁) < ) :
                  MemWℒp (T f₁) p' ν
                  theorem MeasureTheory.HasWeakType.hasBoundedWeakType {α : Type u_1} {α' : Type u_2} {ε₁ : Type u_4} {ε₂ : Type u_5} {m : MeasurableSpace α} {m✝ : MeasurableSpace α'} {p p' : ENNReal} {c : NNReal} {μ : Measure α} {ν : Measure α'} {T : (αε₁)α'ε₂} [ContinuousENorm ε₁] [ContinuousENorm ε₂] [Zero ε₁] (h : HasWeakType T p p' μ ν c) :
                  HasBoundedWeakType T p p' μ ν c

                  Lemmas about HasStrongType #

                  theorem MeasureTheory.HasStrongType.memℒp {α : Type u_1} {α' : Type u_2} {ε₁ : Type u_4} {ε₂ : Type u_5} {m : MeasurableSpace α} {m✝ : MeasurableSpace α'} {p p' : ENNReal} {c : NNReal} {μ : Measure α} {ν : Measure α'} {T : (αε₁)α'ε₂} [ContinuousENorm ε₁] [ContinuousENorm ε₂] {f₁ : αε₁} (h : HasStrongType T p p' μ ν c) (hf₁ : Memℒp f₁ p μ) :
                  Memℒp (T f₁) p' ν
                  theorem MeasureTheory.HasStrongType.hasWeakType {α : Type u_1} {α' : Type u_2} {ε₁ : Type u_4} {ε₂ : Type u_5} {m : MeasurableSpace α} {m✝ : MeasurableSpace α'} {p p' : ENNReal} {c : NNReal} {μ : Measure α} {ν : Measure α'} {T : (αε₁)α'ε₂} [ContinuousENorm ε₁] [ContinuousENorm ε₂] (hp' : 1 p') (h : HasStrongType T p p' μ ν c) :
                  HasWeakType T p p' μ ν c
                  theorem MeasureTheory.HasStrongType.toReal {α : Type u_1} {α' : Type u_2} {ε₁ : Type u_4} {m : MeasurableSpace α} {m✝ : MeasurableSpace α'} {p p' : ENNReal} {c : NNReal} {μ : Measure α} {ν : Measure α'} [ContinuousENorm ε₁] {T : (αε₁)α'ENNReal} (h : HasStrongType T p p' μ ν c) :
                  HasStrongType (fun (x1 : αε₁) (x2 : α') => (T x1 x2).toReal) p p' μ ν c
                  theorem MeasureTheory.hasStrongType_toReal_iff {α : Type u_1} {α' : Type u_2} {ε₁ : Type u_4} {m : MeasurableSpace α} {m✝ : MeasurableSpace α'} {p p' : ENNReal} {c : NNReal} {μ : Measure α} {ν : Measure α'} [ContinuousENorm ε₁] {T : (αε₁)α'ENNReal} (hT : ∀ (f : αε₁), Memℒp f p μ∀ᵐ (x : α') ∂ν, T f x ) :
                  HasStrongType (fun (x1 : αε₁) (x2 : α') => (T x1 x2).toReal) p p' μ ν c HasStrongType T p p' μ ν c

                  Lemmas about HasBoundedStrongType #

                  theorem MeasureTheory.HasBoundedStrongType.memℒp {α : Type u_1} {α' : Type u_2} {ε₁ : Type u_4} {ε₂ : Type u_5} {m : MeasurableSpace α} {m✝ : MeasurableSpace α'} {p p' : ENNReal} {c : NNReal} {μ : Measure α} {ν : Measure α'} {T : (αε₁)α'ε₂} [ContinuousENorm ε₁] [ContinuousENorm ε₂] {f₁ : αε₁} [Zero ε₁] (h : HasBoundedStrongType T p p' μ ν c) (hf₁ : Memℒp f₁ p μ) (h2f₁ : eLpNorm f₁ μ < ) (h3f₁ : μ (Function.support f₁) < ) :
                  Memℒp (T f₁) p' ν
                  theorem MeasureTheory.HasStrongType.hasBoundedStrongType {α : Type u_1} {α' : Type u_2} {ε₁ : Type u_4} {ε₂ : Type u_5} {m : MeasurableSpace α} {m✝ : MeasurableSpace α'} {p p' : ENNReal} {c : NNReal} {μ : Measure α} {ν : Measure α'} {T : (αε₁)α'ε₂} [ContinuousENorm ε₁] [ContinuousENorm ε₂] [Zero ε₁] (h : HasStrongType T p p' μ ν c) :
                  HasBoundedStrongType T p p' μ ν c
                  theorem MeasureTheory.HasBoundedStrongType.hasBoundedWeakType {α : Type u_1} {α' : Type u_2} {ε₁ : Type u_4} {ε₂ : Type u_5} {m : MeasurableSpace α} {m✝ : MeasurableSpace α'} {p p' : ENNReal} {c : NNReal} {μ : Measure α} {ν : Measure α'} {T : (αε₁)α'ε₂} [ContinuousENorm ε₁] [ContinuousENorm ε₂] [Zero ε₁] (hp' : 1 p') (h : HasBoundedStrongType T p p' μ ν c) :
                  HasBoundedWeakType T p p' μ ν c
                  theorem MeasureTheory.distribution_eq_nnnorm {α : Type u_1} {E : Type u_8} {m : MeasurableSpace α} {μ : Measure α} [NormedAddCommGroup E] {t : ENNReal} {f : αE} :
                  distribution f t μ = μ {x : α | t < f x‖₊}
                  theorem MeasureTheory.distribution_mono_left {α : Type u_1} {ε : Type u_3} {m : MeasurableSpace α} {μ : Measure α} {t : ENNReal} {f g : αε} [ContinuousENorm ε] (h : ∀ᵐ (x : α) ∂μ, f x‖ₑ g x‖ₑ) :
                  theorem MeasureTheory.distribution_mono {α : Type u_1} {ε : Type u_3} {m : MeasurableSpace α} {μ : Measure α} {t s : ENNReal} {f g : αε} [ContinuousENorm ε] (h₁ : ∀ᵐ (x : α) ∂μ, f x‖ₑ g x‖ₑ) (h₂ : t s) :
                  theorem MeasureTheory.distribution_snormEssSup {α : Type u_1} {ε : Type u_3} {m : MeasurableSpace α} {μ : Measure α} {f : αε} [ContinuousENorm ε] :
                  theorem MeasureTheory.distribution_smul_left {α : Type u_1} {𝕜 : Type u_7} {E : Type u_8} {m : MeasurableSpace α} {μ : Measure α} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E] [NormedSpace 𝕜 E] {t : ENNReal} {f : αE} {c : 𝕜} (hc : c 0) :
                  distribution (c f) t μ = distribution f (t / c‖₊) μ
                  theorem MeasureTheory.distribution_add_le' {α : Type u_1} {ε : Type u_3} {m : MeasurableSpace α} {μ : Measure α} {t s : ENNReal} {f : αε} [ContinuousENorm ε] {A : ENNReal} {g₁ g₂ : αε} (h : ∀ᵐ (x : α) ∂μ, f x‖ₑ A * (g₁ x‖ₑ + g₂ x‖ₑ)) :
                  distribution f (A * (t + s)) μ distribution g₁ t μ + distribution g₂ s μ
                  theorem MeasureTheory.HasStrongType.const_smul {ε : Type u_3} [ContinuousENorm ε] {𝕜 : Type u_12} {E' : Type u_13} {α : Type u_14} {α' : Type u_15} [NormedAddCommGroup E'] {_x : MeasurableSpace α} {_x' : MeasurableSpace α'} {T : (αε)α'E'} {p p' : ENNReal} {μ : Measure α} {ν : Measure α'} {c : NNReal} (h : HasStrongType T p p' μ ν c) [NormedRing 𝕜] [MulActionWithZero 𝕜 E'] [BoundedSMul 𝕜 E'] (k : 𝕜) :
                  HasStrongType (k T) p p' μ ν (k‖₊ * c)
                  theorem MeasureTheory.HasStrongType.const_mul {ε : Type u_3} [ContinuousENorm ε] {E' : Type u_12} {α : Type u_13} {α' : Type u_14} [NormedRing E'] {_x : MeasurableSpace α} {_x' : MeasurableSpace α'} {T : (αε)α'E'} {p p' : ENNReal} {μ : Measure α} {ν : Measure α'} {c : NNReal} (h : HasStrongType T p p' μ ν c) (e : E') :
                  HasStrongType (fun (f : αε) (x : α') => e * T f x) p p' μ ν (e‖₊ * c)
                  theorem MeasureTheory.distribution_add_le {α : Type u_1} {ε : Type u_3} {m : MeasurableSpace α} {μ : Measure α} {t s : ENNReal} {f g : αε} [ENormedAddMonoid ε] :
                  distribution (f + g) (t + s) μ distribution f t μ + distribution g s μ
                  theorem ContinuousLinearMap.distribution_le {α : Type u_1} {𝕜 : Type u_7} {E₁ : Type u_9} {E₂ : Type u_10} {E₃ : Type u_11} {m : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E₁] [NormedSpace 𝕜 E₁] [NormedAddCommGroup E₂] [NormedSpace 𝕜 E₂] [NormedAddCommGroup E₃] [NormedSpace 𝕜 E₃] (L : E₁ →L[𝕜] E₂ →L[𝕜] E₃) {t s : ENNReal} {f : αE₁} {g : αE₂} :
                  MeasureTheory.distribution (fun (x : α) => (L (f x)) (g x)) (L‖₊ * t * s) μ MeasureTheory.distribution f t μ + MeasureTheory.distribution g s μ
                  theorem MeasureTheory.lintegral_norm_pow_eq_distribution {α : Type u_1} {E : Type u_8} {m : MeasurableSpace α} {μ : Measure α} [NormedAddCommGroup E] [MeasurableSpace E] [BorelSpace E] {f : αE} (hf : AEMeasurable f μ) {p : } (hp : 0 < p) :
                  ∫⁻ (x : α), f x‖ₑ ^ pμ = ∫⁻ (t : ) in Set.Ioi 0, ENNReal.ofReal (p * t ^ (p - 1)) * distribution f (ENNReal.ofReal t) μ

                  The layer-cake theorem, or Cavalieri's principle for functions into a normed group.

                  theorem MeasureTheory.eLpNorm_pow_eq_distribution {α : Type u_1} {E : Type u_8} {m : MeasurableSpace α} {μ : Measure α} [NormedAddCommGroup E] [MeasurableSpace E] [BorelSpace E] {f : αE} (hf : AEMeasurable f μ) {p : NNReal} (hp : 0 < p) :
                  eLpNorm f (↑p) μ ^ p = ∫⁻ (t : ) in Set.Ioi 0, p * ENNReal.ofReal (t ^ (p - 1)) * distribution f (ENNReal.ofReal t) μ

                  The layer-cake theorem, or Cavalieri's principle, written using eLpNorm.

                  theorem MeasureTheory.eLpNorm_eq_distribution {α : Type u_1} {E : Type u_8} {m : MeasurableSpace α} {μ : Measure α} [NormedAddCommGroup E] [MeasurableSpace E] [BorelSpace E] {f : αE} (hf : AEMeasurable f μ) {p : } (hp : 0 < p) :
                  eLpNorm f (ENNReal.ofReal p) μ = (ENNReal.ofReal p * ∫⁻ (t : ) in Set.Ioi 0, distribution f (ENNReal.ofReal t) μ * ENNReal.ofReal (t ^ (p - 1))) ^ p⁻¹

                  The layer-cake theorem, or Cavalieri's principle, written using eLpNorm, without taking powers.

                  theorem MeasureTheory.lintegral_pow_mul_distribution {α : Type u_1} {E : Type u_8} {m : MeasurableSpace α} {μ : Measure α} [NormedAddCommGroup E] [MeasurableSpace E] [BorelSpace E] {f : αE} (hf : AEMeasurable f μ) {p : } (hp : -1 < p) :
                  ∫⁻ (t : ) in Set.Ioi 0, ENNReal.ofReal (t ^ p) * distribution f (ENNReal.ofReal t) μ = ENNReal.ofReal (p + 1)⁻¹ * ∫⁻ (x : α), f x‖ₑ ^ (p + 1)μ