A type E
equipped with a continuous map ‖·‖ₑ : E → ℝ≥0∞
.
Note: do we want to unbundle this (at least separate out TopologicalSpace E
?)
Note: not sure if this is the "right" class to add to Mathlib.
- isOpen_inter (s t : Set E) : TopologicalSpace.IsOpen s → TopologicalSpace.IsOpen t → TopologicalSpace.IsOpen (s ∩ t)
- isOpen_sUnion (s : Set (Set E)) : (∀ t ∈ s, TopologicalSpace.IsOpen t) → TopologicalSpace.IsOpen (⋃₀ s)
- continuous_enorm : Continuous enorm
Instances
An enormed monoid is an additive monoid endowed with a continuous enorm. Note: not sure if this is the "right" class to add to Mathlib.
- isOpen_inter (s t : Set E) : TopologicalSpace.IsOpen s → TopologicalSpace.IsOpen t → TopologicalSpace.IsOpen (s ∩ t)
- isOpen_sUnion (s : Set (Set E)) : (∀ t ∈ s, TopologicalSpace.IsOpen t) → TopologicalSpace.IsOpen (⋃₀ s)
- add : E → E → E
- zero : E
Instances
An enormed monoid is an additive monoid endowed with a continuous enorm. Note: not sure if this is the "right" class to add to Mathlib.
- isOpen_inter (s t : Set E) : TopologicalSpace.IsOpen s → TopologicalSpace.IsOpen t → TopologicalSpace.IsOpen (s ∩ t)
- isOpen_sUnion (s : Set (Set E)) : (∀ t ∈ s, TopologicalSpace.IsOpen t) → TopologicalSpace.IsOpen (⋃₀ s)
- add : E → E → E
- zero : E
Instances
An enormed monoid is an additive monoid endowed with a continuous enorm. Note: not sure if this is the "right" class to add to Mathlib.
- isOpen_inter (s t : Set E) : TopologicalSpace.IsOpen s → TopologicalSpace.IsOpen t → TopologicalSpace.IsOpen (s ∩ t)
- isOpen_sUnion (s : Set (Set E)) : (∀ t ∈ s, TopologicalSpace.IsOpen t) → TopologicalSpace.IsOpen (⋃₀ s)
- add : E → E → E
- zero : E
- sub : E → E → E
Instances
An enormed space is an additive monoid endowed with a continuous enorm. Note: not sure if this is the "right" class to add to Mathlib.
- isOpen_inter (s t : Set E) : TopologicalSpace.IsOpen s → TopologicalSpace.IsOpen t → TopologicalSpace.IsOpen (s ∩ t)
- isOpen_sUnion (s : Set (Set E)) : (∀ t ∈ s, TopologicalSpace.IsOpen t) → TopologicalSpace.IsOpen (⋃₀ s)
- add : E → E → E
- zero : E
Instances
Equations
instance
instENormedSpaceOfNormedSpaceReal
{E : Type u_3}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
:
Equations
theorem
MeasureTheory.Continuous.enorm
{E : Type u_8}
[ContinuousENorm E]
{X : Type u_9}
[TopologicalSpace X]
{f : X → E}
(hf : Continuous f)
:
Continuous fun (x : X) => ‖f x‖ₑ
theorem
MeasureTheory.measurable_enorm
{E : Type u_8}
[ContinuousENorm E]
[MeasurableSpace E]
[OpensMeasurableSpace E]
:
Measurable fun (a : E) => ‖a‖ₑ
theorem
MeasureTheory.AEMeasurable.enorm
{α : Type u_7}
{E : Type u_8}
{m : MeasurableSpace α}
[ContinuousENorm E]
{μ : Measure α}
[MeasurableSpace E]
[OpensMeasurableSpace E]
{f : α → E}
(hf : AEMeasurable f μ)
:
AEMeasurable (fun (a : α) => ‖f a‖ₑ) μ
theorem
MeasureTheory.AEStronglyMeasurable.enorm
{α : Type u_7}
{E : Type u_8}
{m : MeasurableSpace α}
[ContinuousENorm E]
{μ : Measure α}
{f : α → E}
(hf : AEStronglyMeasurable f μ)
:
AEMeasurable (fun (a : α) => ‖f a‖ₑ) μ
theorem
MeasureTheory.StronglyMeasurable.enorm
{α : Type u_7}
{E : Type u_8}
{m : MeasurableSpace α}
[ContinuousENorm E]
{f : α → E}
(hf : StronglyMeasurable f)
:
StronglyMeasurable fun (a : α) => ‖f a‖ₑ