Documentation

Carleson.ToMathlib.RealInterpolation.Misc

This file contains some miscellaneous prerequisites for proving the Marcinkiewisz real interpolation theorem. There are the following sections:

Interface for using cutoff functions #

A ScaledPowerFunction is meant to represent a function of the form t ↦ (t / d)^σ, where d is strictly positive and either σ > 0 or σ < 0.

Instances For
    structure ToneCouple :

    A ToneCouple is a couple of two monotone functions that are practically inverses of each other. It is used in the proof of the real interpolation theorem.

    Note: originally it seemed useful to make the possible choice of this function general in the proof of the real inteprolation theorem. However, in the end really only one function works for all the different cases. This infrastructure, however, could potentially still be useful, if one would like to try to improve the constant.

    Instances For

      A StrictRangeToneCouple is a ToneCouple for which the functions in the couple, when restricted to Ioo 0 ∞, map to Ioo 0 ∞.

      Instances For
        theorem ENNReal.rpow_apply_coe {x : NNReal} {y : } :
        x ^ y = if x = 0 y < 0 then else ↑(x ^ y)
        theorem ENNReal.rpow_apply_coe' {x : ENNReal} {y : } (hx : x ) :
        x ^ y = if x = 0 y < 0 then else ↑(x.toNNReal ^ y)
        theorem ENNReal.rpow_lt_rpow_iff_neg {x y : ENNReal} (hx : x 0) (hy : y ) (hxy : x < y) {z : } (hz : z < 0) :
        y ^ z < x ^ z
        theorem ENNReal.div_lt_div {a b c : ENNReal} (hc : 0 < c) (hc' : c ) :
        a / c < b / c a < b
        theorem ENNReal.rpow_lt_top_of_neg {x : ENNReal} {y : } (hx : 0 < x) (hy : y < 0) :
        x ^ y <
        theorem ENNReal.rpow_lt_top_of_pos_ne_top_ne_zero {x : ENNReal} {y : } (hx : x 0) (hx' : x ) (hy : y 0) :
        x ^ y <
        theorem ENNReal.rpow_pos_of_pos_ne_top_ne_zero {x : ENNReal} {y : } (hx : x 0) (hx' : x ) (hy : y 0) :
        0 < x ^ y

        A scaled power function gives rise to a ToneCouple.

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For

          Results about the particular choice of scale #

          The proof of the real interpolation theorem will estimate
          `distribution (trunc f A(t)) t` and `distribution (truncCompl f A(t)) t` for a
          function `A`. The function `A` can be given a closed-form expression that works for
          _all_ cases in the real interpolation theorem, because of the computation rules available
          for elements in `ℝ≥0∞` that avoid the need for a limiting procedure, e.g. `⊤⁻¹ = 0`.
          
          The function `A` will be of the form `A(t) = (t / d) ^ σ` for particular choices of `d` and
          `σ`. This section contatins results about the scale `d`.
          
          def ChoiceScale.d {α : Type u_1} {ε : Type u_3} {m : MeasurableSpace α} {p p₀ q₀ p₁ q₁ : ENNReal} {C₀ C₁ : NNReal} {μ : MeasureTheory.Measure α} [TopologicalSpace ε] [ENormedAddCommMonoid ε] {f : αε} :
          Equations
          • One or more equations did not get rendered due to their size.
          Instances For
            theorem ChoiceScale.d_pos_aux₀ {α : Type u_1} {ε : Type u_3} {m : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [TopologicalSpace ε] [ENormedAddCommMonoid ε] {f : αε} (hF : MeasureTheory.eLpNorm f p μ Set.Ioo 0 ) :
            theorem ChoiceScale.d_ne_top_aux₀ {b : } {F : ENNReal} (hF : F Set.Ioo 0 ) :
            F ^ b
            theorem ChoiceScale.d_ne_zero_aux₀ {α : Type u_1} {ε : Type u_3} {m : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [TopologicalSpace ε] [ENormedAddCommMonoid ε] {f : αε} {b : } (hF : MeasureTheory.eLpNorm f p μ Set.Ioo 0 ) :
            theorem ChoiceScale.d_ne_zero_aux₁ {C : NNReal} {c : } (hC : 0 < C) :
            C ^ c 0
            theorem ChoiceScale.d_ne_zero_aux₂ {α : Type u_1} {ε : Type u_3} {m : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [TopologicalSpace ε] [ENormedAddCommMonoid ε] {f : αε} {C : NNReal} {b c : } (hC : 0 < C) (hF : MeasureTheory.eLpNorm f p μ Set.Ioo 0 ) :
            C ^ c * (MeasureTheory.eLpNorm f p μ ^ p.toReal) ^ b 0
            theorem ChoiceScale.d_ne_top_aux₁ {C : NNReal} {c : } (hC : 0 < C) :
            C ^ c
            theorem ChoiceScale.d_ne_top_aux₂ {α : Type u_1} {ε : Type u_3} {m : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [TopologicalSpace ε] [ENormedAddCommMonoid ε] {f : αε} {b : } (hF : MeasureTheory.eLpNorm f p μ Set.Ioo 0 ) :
            theorem ChoiceScale.d_ne_top_aux₃ {α : Type u_1} {ε : Type u_3} {m : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [TopologicalSpace ε] [ENormedAddCommMonoid ε] {f : αε} {C : NNReal} {b c : } (hC : 0 < C) (hF : MeasureTheory.eLpNorm f p μ Set.Ioo 0 ) :
            C ^ c * (MeasureTheory.eLpNorm f p μ ^ p.toReal) ^ b
            theorem ChoiceScale.d_ne_zero_aux₃ {α : Type u_1} {ε : Type u_3} {m : MeasurableSpace α} {p : ENNReal} {C₀ C₁ : NNReal} {μ : MeasureTheory.Measure α} [TopologicalSpace ε] [ENormedAddCommMonoid ε] {f : αε} {b₀ c₀ b₁ c₁ : } (hC₀ : 0 < C₀) (hC₁ : 0 < C₁) (hF : MeasureTheory.eLpNorm f p μ Set.Ioo 0 ) :
            C₀ ^ c₀ * (MeasureTheory.eLpNorm f p μ ^ p.toReal) ^ b₀ / (C₁ ^ c₁ * (MeasureTheory.eLpNorm f p μ ^ p.toReal) ^ b₁) 0
            theorem ChoiceScale.d_ne_top_aux₄ {α : Type u_1} {ε : Type u_3} {m : MeasurableSpace α} {p : ENNReal} {C₀ C₁ : NNReal} {μ : MeasureTheory.Measure α} [TopologicalSpace ε] [ENormedAddCommMonoid ε] {f : αε} {b₀ c₀ b₁ c₁ : } (hC₀ : 0 < C₀) (hC₁ : 0 < C₁) (hF : MeasureTheory.eLpNorm f p μ Set.Ioo 0 ) :
            C₀ ^ c₀ * (MeasureTheory.eLpNorm f p μ ^ p.toReal) ^ b₀ / (C₁ ^ c₁ * (MeasureTheory.eLpNorm f p μ ^ p.toReal) ^ b₁)
            theorem ChoiceScale.d_pos {α : Type u_1} {ε : Type u_3} {m : MeasurableSpace α} {p p₀ q₀ p₁ q₁ : ENNReal} {C₀ C₁ : NNReal} {μ : MeasureTheory.Measure α} [TopologicalSpace ε] [ENormedAddCommMonoid ε] {f : αε} (hC₀ : 0 < C₀) (hC₁ : 0 < C₁) (hF : MeasureTheory.eLpNorm f p μ Set.Ioo 0 ) :
            d > 0
            theorem ChoiceScale.d_ne_top {α : Type u_1} {ε : Type u_3} {m : MeasurableSpace α} {p p₀ q₀ p₁ q₁ : ENNReal} {C₀ C₁ : NNReal} {μ : MeasureTheory.Measure α} [TopologicalSpace ε] [ENormedAddCommMonoid ε] {f : αε} (hC₀ : 0 < C₀) (hC₁ : 0 < C₁) (hF : MeasureTheory.eLpNorm f p μ Set.Ioo 0 ) :
            theorem ChoiceScale.d_eq_top₀ {α : Type u_1} {ε : Type u_3} {m : MeasurableSpace α} {p p₀ q₀ p₁ q₁ : ENNReal} {C₀ C₁ : NNReal} {μ : MeasureTheory.Measure α} [TopologicalSpace ε] [ENormedAddCommMonoid ε] {f : αε} (hp₀ : 0 < p₀) (hq₁ : 0 < q₁) (hp₀' : p₀ ) (hq₀' : q₀ = ) (hq₀q₁ : q₀ q₁) :
            d = (C₀ ^ p₀.toReal * MeasureTheory.eLpNorm f p μ ^ p.toReal) ^ p₀.toReal⁻¹
            theorem ChoiceScale.d_eq_top₁ {α : Type u_1} {ε : Type u_3} {m : MeasurableSpace α} {p p₀ q₀ p₁ q₁ : ENNReal} {C₀ C₁ : NNReal} {μ : MeasureTheory.Measure α} [TopologicalSpace ε] [ENormedAddCommMonoid ε] {f : αε} (hq₀ : 0 < q₀) (hp₁ : 0 < p₁) (hp₁' : p₁ ) (hq₁' : q₁ = ) (hq₀q₁ : q₀ q₁) (hC₁ : 0 < C₁) :
            d = (C₁ ^ p₁.toReal * MeasureTheory.eLpNorm f p μ ^ p.toReal) ^ p₁.toReal⁻¹
            theorem ChoiceScale.d_eq_top_of_eq {α : Type u_1} {ε : Type u_3} {m : MeasurableSpace α} {p p₀ q₀ p₁ q₁ : ENNReal} {C₀ C₁ : NNReal} {μ : MeasureTheory.Measure α} [TopologicalSpace ε] [ENormedAddCommMonoid ε] {f : αε} (hC₁ : 0 < C₁) (hp₀ : 0 < p₀) (hq₀ : 0 < q₀) (hq₀' : q₀ ) (hp₀' : p₀ ) (hp₁ : 0 < p₁) (hp₀p₁ : p₀ = p₁) (hpp₀ : p = p₀) (hq₁' : q₁ = ) :
            d = C₁ * MeasureTheory.eLpNorm f p μ
            theorem ChoiceScale.d_eq_top_top {α : Type u_1} {ε : Type u_3} {m : MeasurableSpace α} {p p₀ q₀ p₁ q₁ : ENNReal} {C₀ C₁ : NNReal} {μ : MeasureTheory.Measure α} [TopologicalSpace ε] [ENormedAddCommMonoid ε] {f : αε} (hq₀ : 0 < q₀) (hq₀q₁ : q₀ q₁) (hp₁' : p₁ = ) (hq₁' : q₁ = ) :
            d = C₁
            def ChoiceScale.spf_ch {α : Type u_1} {ε : Type u_3} {m : MeasurableSpace α} {p p₀ q₀ p₁ q₁ : ENNReal} {C₀ C₁ : NNReal} {μ : MeasureTheory.Measure α} [TopologicalSpace ε] [ENormedAddCommMonoid ε] {f : αε} {t : } (ht : t Set.Ioo 0 1) (hq₀q₁ : q₀ q₁) (hp₀ : 0 < p₀) (hq₀ : 0 < q₀) (hp₁ : 0 < p₁) (hq₁ : 0 < q₁) (hp₀p₁ : p₀ p₁) (hC₀ : 0 < C₀) (hC₁ : 0 < C₁) (hF : MeasureTheory.eLpNorm f p μ Set.Ioo 0 ) :

            The particular choice of scaled power function that works in the proof of the real interpolation theorem.

            Equations
            Instances For

              Some tools for measure theory computations #

              A collection of small lemmas to help with integral manipulations.
              
              theorem MeasureTheory.lintegral_double_restrict_set {α : Type u_1} {m : MeasurableSpace α} {μ : Measure α} {A B : Set α} {f : αENNReal} (hA : MeasurableSet A) (hB : MeasurableSet B) (hf : ∀ᵐ (x : α) μ, x A \ Bf x 0) :
              ∫⁻ (x : α) in A, f x μ = ∫⁻ (x : α) in A B, f x μ
              theorem MeasureTheory.lintegral_shift (f : ENNReal) {a : } :
              ∫⁻ (x : ), f (x + a) = ∫⁻ (x : ), f x
              theorem MeasureTheory.lintegral_shift' (f : ENNReal) {a : } {s : Set } :
              ∫⁻ (x : ) in (fun (z : ) => z + a) ⁻¹' s, f (x + a) = ∫⁻ (x : ) in s, f x
              theorem MeasureTheory.lintegral_add_right_Ioi (f : ENNReal) {a b : } :
              ∫⁻ (x : ) in Set.Ioi (b - a), f (x + a) = ∫⁻ (x : ) in Set.Ioi b, f x
              theorem MeasureTheory.lintegral_scale_constant (f : ENNReal) {a : } (h : a 0) :
              ∫⁻ (x : ), f (a * x) = ENNReal.ofReal |a⁻¹| * ∫⁻ (x : ), f x
              theorem MeasureTheory.lintegral_scale_constant_preimage (f : ENNReal) {a : } (h : a 0) {s : Set } :
              ∫⁻ (x : ) in (fun (z : ) => a * z) ⁻¹' s, f (a * x) = ENNReal.ofReal |a⁻¹| * ∫⁻ (x : ) in s, f x
              theorem MeasureTheory.lintegral_scale_constant' {f : ENNReal} {a : } (h : a 0) :
              ENNReal.ofReal |a| * ∫⁻ (x : ), f (a * x) = ∫⁻ (x : ), f x
              theorem MeasureTheory.lintegral_rw_aux {g f₁ f₂ : ENNReal} {A : Set } (heq : f₁ =ᶠ[ae (volume.restrict A)] f₂) :
              ∫⁻ (s : ) in A, g s * f₁ s = ∫⁻ (s : ) in A, g s * f₂ s
              theorem MeasureTheory.power_aux {p q : } :
              (fun (s : ) => ENNReal.ofReal s ^ (p + q)) =ᶠ[ae (volume.restrict (Set.Ioi 0))] fun (s : ) => ENNReal.ofReal s ^ p * ENNReal.ofReal s ^ q
              theorem MeasureTheory.power_aux_2 {p q : } :
              (fun (s : ) => ENNReal.ofReal (s ^ (p + q))) =ᶠ[ae (volume.restrict (Set.Ioi 0))] fun (s : ) => ENNReal.ofReal (s ^ p) * ENNReal.ofReal (s ^ q)
              theorem MeasureTheory.power_aux_3 {p q : } :
              (fun (s : ENNReal) => s ^ (p + q)) =ᶠ[ae volume] fun (s : ENNReal) => s ^ p * s ^ q
              theorem MeasureTheory.power_aux_4 {p : } :
              (fun (s : ) => ENNReal.ofReal (s ^ p)) =ᶠ[ae (volume.restrict (Set.Ioi 0))] fun (s : ) => ENNReal.ofReal s ^ p
              theorem MeasureTheory.extract_constant_double_integral_rpow {f : ENNReal} {q : } (hq : q 0) {a : ENNReal} (ha : a ) :
              ∫⁻ (s : ) in Set.Ioi 0, (∫⁻ (t : ) in Set.Ioi 0, a * f s t) ^ q = a ^ q * ∫⁻ (s : ) in Set.Ioi 0, (∫⁻ (t : ) in Set.Ioi 0, f s t) ^ q
              theorem MeasureTheory.lintegral_rpow_of_gt {β γ : } ( : 0 < β) ( : -1 < γ) :
              ∫⁻ (s : ) in Set.Ioo 0 β, ENNReal.ofReal (s ^ γ) = ENNReal.ofReal (β ^ (γ + 1) / (γ + 1))

              Results about truncations of a function #

              def MeasureTheory.trunc {α : Type u_1} {ε : Type u_3} [TopologicalSpace ε] [ENormedAddMonoid ε] (f : αε) (t : ENNReal) (x : α) :
              ε

              The t-truncation of a function f.

              Equations
              Instances For
                theorem MeasureTheory.trunc_eq_indicator {α : Type u_1} {ε : Type u_3} [TopologicalSpace ε] [ENormedAddMonoid ε] {f : αε} {t : ENNReal} :
                trunc f t = {x : α | f x‖ₑ t}.indicator f
                @[simp]
                theorem MeasureTheory.trunc_top {α : Type u_1} {ε : Type u_3} [TopologicalSpace ε] [ENormedAddMonoid ε] {f : αε} :
                trunc f = f
                def MeasureTheory.truncCompl {α : Type u_1} {ε : Type u_3} [TopologicalSpace ε] [ENormedAddMonoid ε] (f : αε) (t : ENNReal) (x : α) :
                ε

                The complement of a t-truncation of a function f.

                Equations
                Instances For
                  theorem MeasureTheory.truncCompl_eq_indicator {α : Type u_1} {ε : Type u_3} [TopologicalSpace ε] [ENormedAddMonoid ε] {f : αε} {t : ENNReal} :
                  @[simp]
                  theorem MeasureTheory.truncCompl_top {α : Type u_1} {ε : Type u_3} [TopologicalSpace ε] [ENormedAddMonoid ε] {f : αε} :
                  truncCompl f = fun (x : α) => 0
                  theorem MeasureTheory.truncCompl_eq {α : Type u_1} {ε : Type u_3} [TopologicalSpace ε] [ENormedAddMonoid ε] {t : ENNReal} {f : αε} :
                  truncCompl f t = fun (x : α) => if t < f x‖ₑ then f x else 0
                  def MeasureTheory.trnc {α : Type u_1} {ε : Type u_3} [TopologicalSpace ε] [ENormedAddMonoid ε] (j : Bool) (f : αε) (t : ENNReal) :
                  αε

                  A function to deal with truncations and complement of truncations in one go.

                  Equations
                  Instances For
                    @[simp]
                    theorem MeasureTheory.trnc_false {α : Type u_1} {ε : Type u_3} [TopologicalSpace ε] [ENormedAddMonoid ε] {f : αε} {t : ENNReal} :
                    @[simp]
                    theorem MeasureTheory.trnc_true {α : Type u_1} {ε : Type u_3} [TopologicalSpace ε] [ENormedAddMonoid ε] {f : αε} {t : ENNReal} :
                    trnc true f t = trunc f t
                    @[simp]
                    theorem MeasureTheory.trunc_add_truncCompl {α : Type u_1} {ε : Type u_3} [TopologicalSpace ε] [ENormedAddMonoid ε] {f : αε} {t : ENNReal} :
                    trunc f t + truncCompl f t = f

                    A function is the complement if its truncation and the complement of the truncation.

                    theorem MeasureTheory.trnc_true_add_trnc_false {α : Type u_1} {ε : Type u_3} [TopologicalSpace ε] [ENormedAddMonoid ε] {f : αε} {t : ENNReal} :
                    trunc f t + truncCompl f t = f

                    Alias of MeasureTheory.trunc_add_truncCompl.


                    A function is the complement if its truncation and the complement of the truncation.

                    theorem MeasureTheory.trunc_of_nonpos {α : Type u_1} {ε : Type u_3} [TopologicalSpace ε] [ENormedAddMonoid ε] {t : ENNReal} {f : αε} (ht : t 0) :
                    trunc f t = 0

                    If the truncation parameter is non-positive, the truncation vanishes.

                    theorem MeasureTheory.truncCompl_of_nonpos {α : Type u_1} {ε : Type u_3} [TopologicalSpace ε] [ENormedAddMonoid ε] {t : ENNReal} {f : αε} (ht : t 0) :

                    If the truncation parameter is non-positive, the complement of the truncation is the function itself.

                    Measurability properties of truncations #

                    theorem MeasureTheory.aestronglyMeasurable_trnc {α : Type u_1} {ε : Type u_3} {m : MeasurableSpace α} {μ : Measure α} [TopologicalSpace ε] [ENormedAddMonoid ε] {f : αε} {t : ENNReal} {j : Bool} (hf : AEStronglyMeasurable f μ) :
                    theorem MeasureTheory.trunc_le {α : Type u_1} {ε : Type u_3} [TopologicalSpace ε] [ENormedAddMonoid ε] {t : ENNReal} {f : αε} (x : α) :

                    A small lemma that is helpful for rewriting

                    theorem MeasureTheory.trunc_eLpNormEssSup_le {α : Type u_1} {ε : Type u_3} {m : MeasurableSpace α} {μ : Measure α} [TopologicalSpace ε] [ENormedAddMonoid ε] {f : αε} (a : ENNReal) :
                    eLpNormEssSup (trunc f a) μ max 0 a
                    theorem MeasureTheory.trunc_mono {α : Type u_1} {ε : Type u_3} [TopologicalSpace ε] [ENormedAddMonoid ε] {f : αε} {a b : ENNReal} (hab : a b) {x : α} :
                    theorem MeasureTheory.eLpNorm_trunc_mono {α : Type u_1} {ε : Type u_3} {m : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [TopologicalSpace ε] [ENormedAddMonoid ε] {f : αε} :
                    Monotone fun (s : ENNReal) => eLpNorm (trunc f s) p μ

                    The norm of the truncation is monotone in the truncation parameter

                    theorem MeasureTheory.trunc_buildup_enorm {α : Type u_1} {ε : Type u_3} [TopologicalSpace ε] [ENormedAddMonoid ε] {f : αε} {t : ENNReal} {x : α} :
                    theorem MeasureTheory.trunc_le_func {α : Type u_1} {ε : Type u_3} [TopologicalSpace ε] [ENormedAddMonoid ε] {f : αε} {t : ENNReal} {x : α} :
                    theorem MeasureTheory.truncCompl_le_func {α : Type u_1} {ε : Type u_3} [TopologicalSpace ε] [ENormedAddMonoid ε] {f : αε} {t : ENNReal} {x : α} :
                    theorem MeasureTheory.foo {A B C D : ENNReal} (hA : A ) (h : A C) (h' : A + B = C + D) :
                    D B
                    theorem MeasureTheory.truncCompl_anti {α : Type u_1} {ε : Type u_3} [TopologicalSpace ε] [ENormedAddMonoid ε] {f : αε} {s t : ENNReal} {x : α} (hab : t s) (hf : trunc f t x‖ₑ ) :
                    theorem MeasureTheory.eLpNorm_truncCompl_anti {α : Type u_1} {ε : Type u_3} {m : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [TopologicalSpace ε] [ENormedAddMonoid ε] {f : αε} (hf : eLpNorm f 1 μ ) (mf : AEStronglyMeasurable f μ) :
                    Antitone fun (s : ENNReal) => eLpNorm (truncCompl f s) p μ

                    The norm of the complement of the truncation is antitone in the truncation parameter

                    theorem MeasureTheory.eLpNorm_trunc_measurable {α : Type u_1} {ε : Type u_3} {m : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [TopologicalSpace ε] [ENormedAddMonoid ε] {f : αε} :
                    Measurable fun (s : ENNReal) => eLpNorm (trunc f s) p μ

                    The norm of the truncation is meaurable in the truncation parameter

                    theorem MeasureTheory.eLpNorm_truncCompl_measurable {α : Type u_1} {ε : Type u_3} {m : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [TopologicalSpace ε] [ENormedAddMonoid ε] {f : αε} (hf : eLpNorm f 1 μ ) (mf : AEStronglyMeasurable f μ) :
                    Measurable fun (s : ENNReal) => eLpNorm (truncCompl f s) p μ

                    The norm of the complement of the truncation is measurable in the truncation parameter

                    theorem MeasureTheory.trnc_le_func {α : Type u_1} {ε : Type u_3} [TopologicalSpace ε] [ENormedAddMonoid ε] {f : αε} {j : Bool} {a : ENNReal} {x : α} :

                    Truncations and L-p spaces #

                    theorem MeasureTheory.power_estimate {a b t γ : } ( : 0 < γ) (htγ : γ t) (hab : a b) :
                    (t / γ) ^ a (t / γ) ^ b
                    theorem MeasureTheory.power_estimate' {a b t γ : } (ht : 0 < t) (htγ : t γ) (hab : a b) :
                    (t / γ) ^ b (t / γ) ^ a
                    theorem MeasureTheory.rpow_le_rpow_of_exponent_le_base_le {a b t γ : } (ht : 0 < t) (htγ : t γ) (hab : a b) :
                    theorem MeasureTheory.rpow_le_rpow_of_exponent_le_base_le_enorm {a b : } {t γ : ENNReal} (ht : 0 < t) (ht' : t ) (htγ : t γ) (hab : a b) :
                    t ^ b t ^ a * γ ^ (b - a)
                    theorem MeasureTheory.rpow_le_rpow_of_exponent_le_base_ge {a b t γ : } ( : 0 < γ) (htγ : γ t) (hab : a b) :
                    theorem MeasureTheory.rpow_le_rpow_of_exponent_le_base_ge_enorm {a b : } {t γ : ENNReal} ( : 0 < γ) (hγ' : γ ) (htγ : γ t) (hab : a b) :
                    t ^ a t ^ b * γ ^ (a - b)
                    theorem MeasureTheory.trunc_preserves_Lp {α : Type u_1} {ε : Type u_3} {m : MeasurableSpace α} {μ : Measure α} [TopologicalSpace ε] [ENormedAddMonoid ε] {f : αε} {t p : ENNReal} (hf : MemLp f p μ) :
                    MemLp (trunc f t) p μ
                    theorem MeasureTheory.truncCompl_preserves_Lp {α : Type u_1} {ε : Type u_3} {m : MeasurableSpace α} {μ : Measure α} [TopologicalSpace ε] [ENormedAddMonoid ε] {f : αε} {t p : ENNReal} (hf : MemLp f p μ) :
                    MemLp (truncCompl f t) p μ
                    theorem MeasureTheory.eLpNorm_truncCompl_le {α : Type u_1} {ε : Type u_3} {m : MeasurableSpace α} {μ : Measure α} [TopologicalSpace ε] [ENormedAddMonoid ε] {f : αε} {t q : ENNReal} (q_ne_zero : ¬q = 0) (q_ne_top : q ) :
                    eLpNorm (truncCompl f t) q μ ^ q.toReal ∫⁻ (x : α) in {x : α | t < f x‖ₑ}, f x‖ₑ ^ q.toReal μ
                    theorem MeasureTheory.estimate_eLpNorm_truncCompl {α : Type u_1} {ε : Type u_3} {m : MeasurableSpace α} {μ : Measure α} [TopologicalSpace ε] [ENormedAddMonoid ε] {f : αε} {t p q : ENNReal} (p_ne_top : p ) (hpq : q Set.Ioc 0 p) (hf : AEStronglyMeasurable f μ) (ht : 0 < t) :
                    eLpNorm (truncCompl f t) q μ ^ q.toReal t ^ (q.toReal - p.toReal) * eLpNorm f p μ ^ p.toReal
                    theorem MeasureTheory.estimate_eLpNorm_trunc {α : Type u_1} {ε : Type u_3} {m : MeasurableSpace α} {μ : Measure α} [TopologicalSpace ε] [ENormedAddMonoid ε] {f : αε} {t p q : ENNReal} (hq : q ) (hpq : p Set.Ioc 0 q) (hf : AEStronglyMeasurable f μ) :
                    eLpNorm (trunc f t) q μ ^ q.toReal t ^ (q.toReal - p.toReal) * eLpNorm f p μ ^ p.toReal
                    theorem MeasureTheory.trunc_Lp_Lq_higher {α : Type u_1} {ε : Type u_3} {m : MeasurableSpace α} {p q : ENNReal} {μ : Measure α} [TopologicalSpace ε] [ENormedAddMonoid ε] {f : αε} {t : ENNReal} (hpq : p Set.Ioc 0 q) (hf : MemLp f p μ) (ht : t ) :
                    MemLp (trnc f t) q μ

                    If f is in Lp, the truncation is element of Lq for q ≥ p.

                    theorem MeasureTheory.memLp_truncCompl_of_memLp_top {α : Type u_1} {ε : Type u_3} {m : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [TopologicalSpace ε] [ENormedAddMonoid ε] {f : αε} {t : ENNReal} (hf : MemLp f μ) (h : μ {x : α | t < f x‖ₑ} < ) :
                    MemLp (trnc f t) p μ
                    theorem MeasureTheory.truncCompl_Lp_Lq_lower {α : Type u_1} {ε : Type u_3} {m : MeasurableSpace α} {p q : ENNReal} {μ : Measure α} [TopologicalSpace ε] [ENormedAddMonoid ε] {f : αε} {t : ENNReal} (hp : p ) (hpq : q Set.Ioc 0 p) (ht : 0 < t) (hf : MemLp f p μ) :
                    MemLp (trnc f t) q μ

                    If f is in Lp, the complement of the truncation is in Lq for q ≤ p.

                    theorem MeasureTheory.memLp_of_memLp_le_of_memLp_ge {α : Type u_1} {ε : Type u_3} {m : MeasurableSpace α} {p q : ENNReal} {μ : Measure α} [TopologicalSpace ε] [ENormedAddMonoid ε] {f : αε} [ContinuousAdd ε] {r : ENNReal} (hp : 0 < p) (hr' : q Set.Icc p r) (hf : MemLp f p μ) (hf' : MemLp f r μ) :
                    MemLp f q μ

                    Some results about the integrals of truncations #

                    theorem MeasureTheory.res'comp₀ (j : Bool) (β : ENNReal) ( : 0 < β) :
                    Set.Ioi 0 \ res' j β = res (decide ¬j = true) β
                    theorem MeasureTheory.res'comp (j : Bool) (β : ENNReal) :
                    Set.Ioi 0 \ res' j β = res (decide ¬j = true) β
                    theorem MeasureTheory.lintegral_trunc_mul₀ {α : Type u_1} {ε : Type u_3} [TopologicalSpace ε] [ENormedAddCommMonoid ε] {f : αε} {g : ENNReal} {j : Bool} {x : α} {tc : ToneCouple} {p : } (hp : 0 < p) :
                    ∫⁻ (s : ) in Set.Ioi 0, g s * trnc j f (tc.ton (ENNReal.ofReal s)) x‖ₑ ^ p = ∫⁻ (s : ) in res' (j ^^ tc.mon) (tc.inv f x‖ₑ), g s * trnc j f (tc.ton (ENNReal.ofReal s)) x‖ₑ ^ p
                    theorem MeasureTheory.lintegral_trunc_mul₁ {α : Type u_1} {ε : Type u_3} [TopologicalSpace ε] [ENormedAddCommMonoid ε] {f : αε} {g : ENNReal} {j : Bool} {x : α} {p : } {tc : ToneCouple} :
                    ∫⁻ (s : ) in res' (j ^^ tc.mon) (tc.inv f x‖ₑ), g s * trnc j f (tc.ton (ENNReal.ofReal s)) x‖ₑ ^ p = ∫⁻ (s : ) in res (j ^^ tc.mon) (tc.inv f x‖ₑ), g s * trnc j f (tc.ton (ENNReal.ofReal s)) x‖ₑ ^ p
                    theorem MeasureTheory.lintegral_trunc_mul₂ {α : Type u_1} {ε : Type u_3} [TopologicalSpace ε] [ENormedAddCommMonoid ε] {f : αε} {g : ENNReal} {j : Bool} {x : α} {p : } {tc : ToneCouple} :
                    ∫⁻ (s : ) in res (j ^^ tc.mon) (tc.inv f x‖ₑ), g s * trnc j f (tc.ton (ENNReal.ofReal s)) x‖ₑ ^ p = ∫⁻ (s : ) in res (j ^^ tc.mon) (tc.inv f x‖ₑ), g s * f x‖ₑ ^ p
                    theorem MeasureTheory.lintegral_trunc_mul {α : Type u_1} {ε : Type u_3} [TopologicalSpace ε] [ENormedAddCommMonoid ε] {f : αε} {g : ENNReal} (hg : AEMeasurable g volume) {j : Bool} {x : α} {tc : ToneCouple} {p : } (hp : 0 < p) :
                    ∫⁻ (s : ) in Set.Ioi 0, g s * trnc j f (tc.ton (ENNReal.ofReal s)) x‖ₑ ^ p = (∫⁻ (s : ) in res (j ^^ tc.mon) (tc.inv f x‖ₑ), g s) * f x‖ₑ ^ p

                    Extract expressions for the lower Lebesgue integral of power functions

                    theorem MeasureTheory.lintegral_rpow_of_gt_abs {β γ : } ( : 0 < β) ( : γ > -1) :
                    ∫⁻ (s : ) in Set.Ioo 0 β, ENNReal.ofReal (s ^ γ) = ENNReal.ofReal (β ^ (γ + 1) / |γ + 1|)
                    theorem MeasureTheory.lintegral_Ioi_rpow_of_lt_abs {β σ : } ( : 0 < β) ( : σ < -1) :
                    ∫⁻ (s : ) in Set.Ioi β, ENNReal.ofReal (s ^ σ) = ENNReal.ofReal (β ^ (σ + 1) / |σ + 1|)
                    theorem MeasureTheory.value_lintegral_res₀ {j : Bool} {β : ENNReal} {γ : } ( : if j = true then γ > -1 else γ < -1) :
                    ∫⁻ (s : ) in res j β, ENNReal.ofReal (s ^ γ) = β ^ (γ + 1) / ENNReal.ofReal |γ + 1|
                    theorem MeasureTheory.value_lintegral_res₁ {t : ENNReal} {γ p' : } {spf : ScaledPowerFunction} (ht : 0 < t) (ht' : t ) :
                    (spf_to_tc spf).inv t ^ (γ + 1) / ENNReal.ofReal |γ + 1| * t ^ p' = spf.d ^ (γ + 1) * t ^ (spf.σ⁻¹ * (γ + 1) + p') / ENNReal.ofReal |γ + 1|
                    theorem MeasureTheory.value_lintegral_res₂ {t : ENNReal} {γ p' : } {spf : ScaledPowerFunction} (ht : 0 < t) (hσp' : 0 < spf.σ⁻¹ * (γ + 1) + p') :
                    (spf_to_tc spf).inv t ^ (γ + 1) / ENNReal.ofReal |γ + 1| * t ^ p' spf.d ^ (γ + 1) * t ^ (spf.σ⁻¹ * (γ + 1) + p') / ENNReal.ofReal |γ + 1|
                    theorem MeasureTheory.AEStronglyMeasurable.induction {α : Type u_4} {β : Type u_5} { : MeasurableSpace α} [TopologicalSpace β] {μ : Measure α} {motive : (αβ)Prop} (ae_eq_implies : ∀ ⦃f g : αβ⦄, StronglyMeasurable ff =ᶠ[ae μ] gmotive fmotive g) (measurable : ∀ ⦃f : αβ⦄, StronglyMeasurable fmotive f) f : αβ (hf : AEStronglyMeasurable f μ) :
                    motive f