Documentation

Carleson.ToMathlib.MeasureTheory.Function.LocallyIntegrable

theorem MeasureTheory.LocallyIntegrable.norm {X : Type u_1} {E : Type u_2} [MeasurableSpace X] [TopologicalSpace X] [NormedAddCommGroup E] {f : XE} {μ : Measure X} (hf : LocallyIntegrable f μ) :
LocallyIntegrable (fun (x : X) => f x) μ
theorem MeasureTheory.LocallyIntegrable.congr'_enorm {X : Type u_1} {ε : Type u_2} {ε' : Type u_3} [MeasurableSpace X] [TopologicalSpace X] [TopologicalSpace ε] [ContinuousENorm ε] [TopologicalSpace ε'] [ContinuousENorm ε'] {μ : Measure X} {f : Xε} {g : Xε'} (hf : LocallyIntegrable f μ) (hg : AEStronglyMeasurable g μ) (h : ∀ᵐ (a : X) μ, f a‖ₑ = g a‖ₑ) :
theorem MeasureTheory.locallyIntegrable_congr'_enorm {X : Type u_1} {ε : Type u_2} {ε' : Type u_3} [MeasurableSpace X] [TopologicalSpace X] [TopologicalSpace ε] [ContinuousENorm ε] [TopologicalSpace ε'] [ContinuousENorm ε'] {μ : Measure X} {f : Xε} {g : Xε'} (hf : AEStronglyMeasurable f μ) (hg : AEStronglyMeasurable g μ) (h : ∀ᵐ (a : X) μ, f a‖ₑ = g a‖ₑ) :
theorem MeasureTheory.LocallyIntegrable.congr {X : Type u_1} {ε : Type u_2} [MeasurableSpace X] [TopologicalSpace X] [TopologicalSpace ε] [ContinuousENorm ε] {μ : Measure X} {f g : Xε} (hf : LocallyIntegrable f μ) (h : f =ᶠ[ae μ] g) :