Documentation

Carleson.Defs

Miscellaneous definitions. These are mostly the definitions used to state the metric Carleson theorem. We should move them to separate files once we start proving things about them.

def localOscillation {𝕜 : Type u_1} {X : Type u_2} [RCLike 𝕜] [PseudoMetricSpace X] (E : Set X) (f g : C(X, 𝕜)) :

The local oscillation of two functions w.r.t. a set E. This is d_E in the blueprint.

Equations
Instances For
    def localOscillationBall {𝕜 : Type u_1} {X : Type u_2} [RCLike 𝕜] [PseudoMetricSpace X] (E : Set X) (f : C(X, 𝕜)) (r : ) :
    Set C(X, 𝕜)

    A ball w.r.t. the distance localOscillation

    Equations
    Instances For
      class FunctionDistances (𝕜 : outParam (Type u_3)) (X : Type u) [NormedField 𝕜] [TopologicalSpace X] :
      Type (max (u + 1) u_3)

      A class stating that continuous functions have distances associated to every ball. We use a separate type to conveniently index these functions.

      Instances
        instance instCoeΘContinuousMap {𝕜 : Type u_1} {X : Type u_2} [RCLike 𝕜] [PseudoMetricSpace X] [FunctionDistances 𝕜 X] :
        Coe (Θ X) C(X, 𝕜)
        Equations
        • instCoeΘContinuousMap = { coe := coeΘ }
        instance instFunLikeΘ {𝕜 : Type u_1} {X : Type u_2} [RCLike 𝕜] [PseudoMetricSpace X] [FunctionDistances 𝕜 X] :
        FunLike (Θ X) X 𝕜
        Equations
        • instFunLikeΘ = { coe := fun (f : Θ X) => (coeΘ f), coe_injective' := }
        instance instContinuousMapClassΘ {𝕜 : Type u_1} {X : Type u_2} [RCLike 𝕜] [PseudoMetricSpace X] [FunctionDistances 𝕜 X] :
        Equations
        • =
        def WithFunctionDistance {𝕜 : Type u_1} {X : Type u_2} [RCLike 𝕜] [PseudoMetricSpace X] [FunctionDistances 𝕜 X] (x : X) (r : ) :
        Type u_2
        Equations
        Instances For
          def toWithFunctionDistance {𝕜 : Type u_1} {X : Type u_2} [RCLike 𝕜] [PseudoMetricSpace X] {x : X} {r : } [FunctionDistances 𝕜 X] :
          Equations
          Instances For
            Equations
            Equations
            • One or more equations did not get rendered due to their size.
            Instances For

              Pretty printer defined by notation3 command.

              Equations
              • One or more equations did not get rendered due to their size.
              Instances For

                Pretty printer defined by notation3 command.

                Equations
                • One or more equations did not get rendered due to their size.
                Instances For
                  Equations
                  • One or more equations did not get rendered due to their size.
                  Instances For
                    Equations
                    • One or more equations did not get rendered due to their size.
                    Instances For

                      Pretty printer defined by notation3 command.

                      Equations
                      • One or more equations did not get rendered due to their size.
                      Instances For
                        class CompatibleFunctions (𝕜 : outParam (Type u_3)) (X : Type u) (A : outParam ) [RCLike 𝕜] [PseudoMetricSpace X] extends FunctionDistances 𝕜 X :
                        Type (max (u + 1) u_3)

                        A set Θ of (continuous) functions is compatible. A will usually be 2 ^ a.

                        Instances
                          instance nonempty_Space {𝕜 : Type u_1} {X : Type u_2} {A : } [RCLike 𝕜] [PseudoMetricSpace X] [CompatibleFunctions 𝕜 X A] :
                          Equations
                          • =
                          instance inhabited_Space {𝕜 : Type u_1} {X : Type u_2} {A : } [RCLike 𝕜] [PseudoMetricSpace X] [CompatibleFunctions 𝕜 X A] :
                          Equations
                          • inhabited_Space = { default := .some }
                          theorem dist_congr {𝕜 : Type u_1} {X : Type u_2} [RCLike 𝕜] [PseudoMetricSpace X] [FunctionDistances 𝕜 X] {x₁ x₂ : X} {r₁ r₂ : } {f g : Θ X} (e₁ : x₁ = x₂) (e₂ : r₁ = r₂) :
                          dist f g = dist f g
                          def cancelPt {𝕜 : Type u_1} (X : Type u_2) {A : } [RCLike 𝕜] [PseudoMetricSpace X] [CompatibleFunctions 𝕜 X A] :
                          X

                          The point o in the blueprint

                          Equations
                          Instances For
                            theorem cancelPt_eq_zero {𝕜 : Type u_1} {X : Type u_2} {A : } [RCLike 𝕜] [PseudoMetricSpace X] [CompatibleFunctions 𝕜 X A] {f : Θ X} :
                            f (cancelPt X) = 0
                            def iLipNorm {X : Type u_2} [PseudoMetricSpace X] {𝕜 : Type u_3} [NormedField 𝕜] (ϕ : X𝕜) (x₀ : X) (R : ) :

                            The inhomogeneous Lipschitz norm on a ball.

                            Equations
                            Instances For
                              theorem iLipNorm_nonneg {X : Type u_2} [PseudoMetricSpace X] {𝕜 : Type u_3} [NormedField 𝕜] {ϕ : X𝕜} {x₀ : X} {R : } (hR : 0 R) :
                              0 iLipNorm ϕ x₀ R

                              Θ is τ-cancellative. τ will usually be 1 / a

                              Instances

                                The "volume function" V. Note that we will need to assume IsFiniteMeasureOnCompacts and ProperSpace to actually know that this volume is finite.

                                Equations
                                Instances For
                                  def CZOperator {X : Type u_2} {A : } [PseudoMetricSpace X] [MeasureTheory.DoublingMeasure X A] (K : XX) (r : ) (f : X) (x : X) :

                                  The Calderon Zygmund operator T_r in chapter Two-sided Metric Space Carleson

                                  Equations
                                  Instances For
                                    def upperRadius {X : Type u_2} [PseudoMetricSpace X] [FunctionDistances X] (Q : XΘ X) (θ : Θ X) (x : X) :

                                    R_Q(θ, x) defined in (1.0.20).

                                    Equations
                                    Instances For
                                      def linearizedNontangentialOperator {X : Type u_2} {A : } [PseudoMetricSpace X] [MeasureTheory.DoublingMeasure X A] [FunctionDistances X] (Q : XΘ X) (θ : Θ X) (K : XX) (f : X) (x : X) :

                                      The linearized maximally truncated nontangential Calderon Zygmund operator T_Q^θ

                                      Equations
                                      • One or more equations did not get rendered due to their size.
                                      Instances For
                                        def nontangentialOperator {X : Type u_2} {A : } [PseudoMetricSpace X] [MeasureTheory.DoublingMeasure X A] (K : XX) (f : X) (x : X) :

                                        The maximally truncated nontangential Calderon Zygmund operator T_*

                                        Equations
                                        Instances For
                                          def linearizedCarlesonOperator {X : Type u_2} {A : } [PseudoMetricSpace X] [MeasureTheory.DoublingMeasure X A] [FunctionDistances X] (Q : XΘ X) (K : XX) (f : X) (x : X) :

                                          The linearized generalized Carleson operator T_Q, taking values in ℝ≥0∞. Use ENNReal.toReal to get the corresponding real number.

                                          Equations
                                          • One or more equations did not get rendered due to their size.
                                          Instances For
                                            def carlesonOperator {X : Type u_2} {A : } [PseudoMetricSpace X] [MeasureTheory.DoublingMeasure X A] [FunctionDistances X] (K : XX) (f : X) (x : X) :

                                            The generalized Carleson operator T, taking values in ℝ≥0∞. Use ENNReal.toReal to get the corresponding real number.

                                            Equations
                                            Instances For
                                              @[reducible, inline]
                                              abbrev defaultA (a : ) :

                                              This is usually the value of the argument A in DoublingMeasure and CompatibleFunctions

                                              Equations
                                              Instances For
                                                def defaultD (a : ) :
                                                Equations
                                                Instances For
                                                  def defaultκ (a : ) :
                                                  Equations
                                                  Instances For
                                                    def defaultZ (a : ) :
                                                    Equations
                                                    Instances For
                                                      def defaultτ (a : ) :
                                                      Equations
                                                      Instances For
                                                        theorem defaultD_pos (a : ) :
                                                        0 < (defaultD a)
                                                        theorem defaultD_pow_pos (a : ) (z : ) :
                                                        0 < (defaultD a) ^ z
                                                        theorem mul_defaultD_pow_pos (a : ) {r : } (hr : 0 < r) (z : ) :
                                                        0 < r * (defaultD a) ^ z
                                                        def C_K (a : ) :

                                                        The constant used twice in the definition of the Calderon-Zygmund kernel.

                                                        Equations
                                                        Instances For
                                                          theorem C_K_pos (a : ) :
                                                          0 < C_K a
                                                          class IsOneSidedKernel {X : Type u_1} [PseudoMetricSpace X] [MeasureTheory.MeasureSpace X] (a : outParam ) (K : XX) :

                                                          K is a one-sided Calderon-Zygmund kernel In the formalization K x y is defined everywhere, even for x = y. The assumptions on K show that K x x = 0.

                                                          Instances
                                                            theorem measurable_K_left {X : Type u_1} {a : } {K : XX} [PseudoMetricSpace X] [MeasureTheory.MeasureSpace X] [IsOneSidedKernel a K] (y : X) :
                                                            Measurable fun (x : X) => K x y
                                                            class IsTwoSidedKernel {X : Type u_1} [PseudoMetricSpace X] [MeasureTheory.MeasureSpace X] (a : outParam ) (K : XX) extends IsOneSidedKernel a K :

                                                            K is a two-sided Calderon-Zygmund kernel In the formalization K x y is defined everywhere, even for x = y. The assumptions on K show that K x x = 0.

                                                            Instances
                                                              def C_Ts (a : ) :
                                                              Equations
                                                              Instances For
                                                                class PreProofData {X : Type u_1} (a : outParam ) (q : outParam ) (K : outParam (XX)) (σ₁ σ₂ : outParam (X)) (F G : outParam (Set X)) [PseudoMetricSpace X] :
                                                                Type (u_1 + 1)

                                                                Data common through most of chapters 2-9.

                                                                Instances
                                                                  theorem le_cdist_iterate {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [PseudoMetricSpace X] [PreProofData a q K σ₁ σ₂ F G] {x : X} {r : } (hr : 0 r) (f g : Θ X) (k : ) :
                                                                  2 ^ k * dist f g dist f g
                                                                  theorem cdist_le_iterate {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [PseudoMetricSpace X] [PreProofData a q K σ₁ σ₂ F G] {x : X} {r : } (hr : 0 < r) (f g : Θ X) (k : ) :
                                                                  dist f g (defaultA a) ^ k * dist f g
                                                                  theorem ballsCoverBalls_iterate_nat {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [PseudoMetricSpace X] [PreProofData a q K σ₁ σ₂ F G] {x : X} {d r : } {n : } :
                                                                  theorem ballsCoverBalls_iterate {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [PseudoMetricSpace X] [PreProofData a q K σ₁ σ₂ F G] {x : X} {d R r : } (hR : 0 < R) (hr : 0 < r) :
                                                                  theorem measurable_Q₂ {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [PseudoMetricSpace X] [PreProofData a q K σ₁ σ₂ F G] :
                                                                  Measurable fun (p : X × X) => (Q p.1) p.2
                                                                  theorem aestronglyMeasurable_Q₂ {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [PseudoMetricSpace X] [PreProofData a q K σ₁ σ₂ F G] :
                                                                  MeasureTheory.AEStronglyMeasurable (fun (p : X × X) => (Q p.1) p.2) MeasureTheory.volume
                                                                  theorem S_spec (X : Type u_1) {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [PseudoMetricSpace X] [PreProofData a q K σ₁ σ₂ F G] :
                                                                  ∃ (n : ), ∀ (x : X), -n σ₁ x σ₂ x n
                                                                  theorem twentyfive_le_realD (X : Type u_1) {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [PseudoMetricSpace X] [PreProofData a q K σ₁ σ₂ F G] :
                                                                  25 (defaultD a)
                                                                  theorem eight_le_realD (X : Type u_1) {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [PseudoMetricSpace X] [PreProofData a q K σ₁ σ₂ F G] :
                                                                  8 (defaultD a)
                                                                  theorem five_le_realD (X : Type u_1) {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [PseudoMetricSpace X] [PreProofData a q K σ₁ σ₂ F G] :
                                                                  5 (defaultD a)
                                                                  theorem four_le_realD (X : Type u_1) {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [PseudoMetricSpace X] [PreProofData a q K σ₁ σ₂ F G] :
                                                                  4 (defaultD a)
                                                                  theorem one_le_realD (X : Type u_1) {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [PseudoMetricSpace X] [PreProofData a q K σ₁ σ₂ F G] :
                                                                  1 (defaultD a)
                                                                  def defaultS (X : Type u_1) {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [PseudoMetricSpace X] [PreProofData a q K σ₁ σ₂ F G] :
                                                                  Equations
                                                                  Instances For
                                                                    theorem range_σ₁_subset {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [PseudoMetricSpace X] [PreProofData a q K σ₁ σ₂ F G] :
                                                                    Set.range σ₁ Set.Icc (-(defaultS X)) (defaultS X)
                                                                    theorem range_σ₂_subset {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [PseudoMetricSpace X] [PreProofData a q K σ₁ σ₂ F G] :
                                                                    Set.range σ₂ Set.Icc (-(defaultS X)) (defaultS X)
                                                                    theorem Icc_σ_subset_Icc_S {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [PseudoMetricSpace X] [PreProofData a q K σ₁ σ₂ F G] {x : X} :
                                                                    Set.Icc (σ₁ x) (σ₂ x) Set.Icc (-(defaultS X)) (defaultS X)
                                                                    theorem neg_S_mem_or_S_mem {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [PseudoMetricSpace X] [PreProofData a q K σ₁ σ₂ F G] [Nonempty X] :
                                                                    -(defaultS X) Set.range σ₁ (defaultS X) Set.range σ₂
                                                                    theorem a_pos (X : Type u_1) {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [PseudoMetricSpace X] [PreProofData a q K σ₁ σ₂ F G] :
                                                                    0 < a
                                                                    theorem cast_a_pos (X : Type u_1) {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [PseudoMetricSpace X] [PreProofData a q K σ₁ σ₂ F G] :
                                                                    0 < a
                                                                    theorem τ_pos (X : Type u_1) {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [PseudoMetricSpace X] [PreProofData a q K σ₁ σ₂ F G] :
                                                                    theorem τ_nonneg (X : Type u_1) {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [PseudoMetricSpace X] [PreProofData a q K σ₁ σ₂ F G] :
                                                                    def nnτ (X : Type u_1) {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [PseudoMetricSpace X] [PreProofData a q K σ₁ σ₂ F G] :

                                                                    τ as an element of ℝ≥0.

                                                                    Equations
                                                                    Instances For
                                                                      theorem q_pos (X : Type u_1) {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [PseudoMetricSpace X] [PreProofData a q K σ₁ σ₂ F G] :
                                                                      0 < q
                                                                      theorem q_nonneg (X : Type u_1) {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [PseudoMetricSpace X] [PreProofData a q K σ₁ σ₂ F G] :
                                                                      0 q
                                                                      def nnq (X : Type u_1) {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [PseudoMetricSpace X] [PreProofData a q K σ₁ σ₂ F G] :

                                                                      q as an element of ℝ≥0.

                                                                      Equations
                                                                      • nnq X = q,
                                                                      Instances For
                                                                        theorem nnq_pos (X : Type u_1) {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [PseudoMetricSpace X] [PreProofData a q K σ₁ σ₂ F G] :
                                                                        0 < nnq X
                                                                        theorem nnq_mem_Ioc (X : Type u_1) {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [PseudoMetricSpace X] [PreProofData a q K σ₁ σ₂ F G] :
                                                                        class ProofData {X : Type u_1} (a : outParam ) (q : outParam ) (K : outParam (XX)) (σ₁ σ₂ : outParam (X)) (F G : outParam (Set X)) [PseudoMetricSpace X] extends PreProofData a q K σ₁ σ₂ F G :
                                                                        Type (u_1 + 1)
                                                                        Instances
                                                                          theorem one_lt_D {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [PseudoMetricSpace X] [ProofData a q K σ₁ σ₂ F G] :
                                                                          1 < (defaultD a)
                                                                          theorem one_le_D {a : } :
                                                                          1 (defaultD a)
                                                                          theorem D_nonneg {a : } :
                                                                          0 (defaultD a)
                                                                          theorem κ_nonneg {a : } :
                                                                          theorem two_le_κZ {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [PseudoMetricSpace X] [ProofData a q K σ₁ σ₂ F G] :
                                                                          2 defaultκ a * (defaultZ a)

                                                                          Used in third_exception (Lemma 5.2.10).

                                                                          theorem DκZ_le_two_rpow_100 {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [PseudoMetricSpace X] [ProofData a q K σ₁ σ₂ F G] :
                                                                          (defaultD a) ^ (-defaultκ a * (defaultZ a)) 2 ^ (-100)

                                                                          Used in third_exception (Lemma 5.2.10).

                                                                          theorem four_le_Z {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [PseudoMetricSpace X] [ProofData a q K σ₁ σ₂ F G] :
                                                                          def nnD (a : ) :

                                                                          D as an element of ℝ≥0.

                                                                          Equations
                                                                          Instances For
                                                                            def hnorm {X : Type u_1} {a : } [PseudoMetricSpace X] (ϕ : X) (x₀ : X) (R : NNReal) :

                                                                            the L^∞-normalized τ-Hölder norm. Do we use this for other values of τ?

                                                                            Equations
                                                                            Instances For

                                                                              Lemma 2.1.1

                                                                              def C2_1_1 (k a : ) :
                                                                              Equations
                                                                              Instances For
                                                                                theorem Θ.finite_and_mk_le_of_le_dist {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [PseudoMetricSpace X] [ProofData a q K σ₁ σ₂ F G] {x₀ : X} {r R : } {f : Θ X} {k : } {𝓩 : Set (Θ X)} (h𝓩 : 𝓩 Metric.ball f (r * 2 ^ k)) (h2𝓩 : 𝓩.PairwiseDisjoint fun (x : Θ X) => Metric.ball x r) :
                                                                                𝓩.Finite Cardinal.mk 𝓩 (C2_1_1 k a)
                                                                                theorem Θ.card_le_of_le_dist {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [PseudoMetricSpace X] [ProofData a q K σ₁ σ₂ F G] {x₀ : X} {r R : } {f : Θ X} {k : } {𝓩 : Set (Θ X)} (h𝓩 : 𝓩 Metric.ball f (r * 2 ^ k)) (h2𝓩 : 𝓩.PairwiseDisjoint fun (x : Θ X) => Metric.ball x r) :
                                                                                Nat.card 𝓩 C2_1_1 k a