Documentation

Carleson.ToMathlib.MeasureTheory.Function.SimpleFunc

theorem MeasureTheory.SimpleFunc.induction₀ {α : Type u_1} {γ : Type u_3} [MeasurableSpace α] [AddZeroClass γ] {motive : SimpleFunc α γProp} (const : ∀ (c : γ) {s : Set α}, MeasurableSet smotive ((const α c).restrict s)) (add : ∀ ⦃f : SimpleFunc α γ⦄ (c : γ) ⦃s : Set α⦄, MeasurableSet sDisjoint (Function.support f) smotive fmotive ((SimpleFunc.const α c).restrict s)motive (f + (SimpleFunc.const α c).restrict s)) (f : SimpleFunc α γ) :
motive f
theorem MeasureTheory.SimpleFunc.induction'' {α : Type u_1} [MeasurableSpace α] {motive : SimpleFunc α NNRealProp} (const : ∀ (c : NNReal) {s : Set α}, MeasurableSet smotive ((const α c).restrict s)) (add : ∀ ⦃f : SimpleFunc α NNReal⦄ (c : NNReal) ⦃s : Set α⦄, MeasurableSet sFunction.support f smotive fmotive ((SimpleFunc.const α c).restrict s)motive (f + (SimpleFunc.const α c).restrict s)) (f : SimpleFunc α NNReal) :
motive f
theorem MeasureTheory.SimpleFunc.approx_le {α : Type u_1} {β : Type u_2} [inst : MeasurableSpace α] [ConditionallyCompleteLinearOrderBot β] [Zero β] [TopologicalSpace β] [OrderClosedTopology β] [MeasurableSpace β] [OpensMeasurableSpace β] {i : β} {f : αβ} (hf : Measurable f) (h_zero : 0 = ) {a : α} {n : } :
(approx i f n) a f a
theorem MeasureTheory.SimpleFunc.iSup_approx_apply' {α : Type u_1} {β : Type u_2} [MeasurableSpace α] [ConditionallyCompleteLinearOrderBot β] [TopologicalSpace β] [OrderClosedTopology β] [Zero β] [MeasurableSpace β] [OpensMeasurableSpace β] (i : β) (f : αβ) (a : α) (hf : Measurable f) (h_zero : 0 = ) :
⨆ (n : ), (approx i f n) a = ⨆ (k : ), ⨆ (_ : i k f a), i k

A sequence of ℝ≥0s such that its range is the set of non-negative rational numbers.

Equations
Instances For

    Approximate a function α → ℝ≥0 by a sequence of simple functions.

    Equations
    Instances For
      theorem MeasureTheory.SimpleFunc.iSup_nnapprox_apply {α : Type u_1} [MeasurableSpace α] {f : αNNReal} (hf : Measurable f) (a : α) :
      ⨆ (n : ), (nnapprox f n) a = f a
      theorem MeasureTheory.SimpleFunc.iSup_nnapprox {α : Type u_1} [MeasurableSpace α] {f : αNNReal} (hf : Measurable f) :
      (fun (a : α) => ⨆ (n : ), (nnapprox f n) a) = f
      theorem MeasureTheory.Measurable.nnreal_induction {α : Type u_5} { : MeasurableSpace α} {motive : (αNNReal)Prop} (simpleFunc : ∀ ⦃f : SimpleFunc α NNReal⦄, motive f) (approx : ∀ ⦃f : αNNReal⦄, Measurable f(∀ (n : ), motive (SimpleFunc.nnapprox f n))motive f) f : αNNReal (hf : Measurable f) :
      motive f

      modelled after Measurable.ennreal_induction but with very raw assumptions

      theorem MeasureTheory.Measurable.ennreal_induction' {α : Type u_5} { : MeasurableSpace α} {motive : (αENNReal)Prop} (simpleFunc : ∀ ⦃f : SimpleFunc α ENNReal⦄, motive f) (iSup : ∀ ⦃f : SimpleFunc α ENNReal⦄, Monotone f(∀ (n : ), motive (f n))motive fun (x : α) => ⨆ (n : ), (f n) x) f : αENNReal (hf : Measurable f) :
      motive f