Documentation

Carleson.ToMathlib.Rearrangement

Decreasing rearrangements f^# #

def MeasureTheory.rearrangement {α : Type u_1} {ε : Type u_2} {m : MeasurableSpace α} [ENorm ε] (f : αε) (t : ENNReal) (μ : Measure α) :

The decreasing rearrangement function f^#. It equals μ univ for t = 0. Note that unlike the notes, we also define this for t = ∞.

Equations
Instances For
    theorem MeasureTheory.rearrangement_mono_right {α : Type u_1} {ε : Type u_2} {m : MeasurableSpace α} [ENorm ε] {f : αε} {μ : Measure α} {x y : ENNReal} (h : x y) :
    theorem MeasureTheory.rearrangement_mono_right' {α : Type u_1} {ε : Type u_2} {m : MeasurableSpace α} [ENorm ε] {f : αε} {μ : Measure α} :
    Antitone fun (t : ENNReal) => rearrangement f t μ
    theorem MeasureTheory.rearrangement_mono_left {α : Type u_1} {ε : Type u_2} {ε' : Type u_3} {m : MeasurableSpace α} [ENorm ε] [ENorm ε'] {f : αε} {g : αε'} {μ : Measure α} {x : ENNReal} (h : ∀ᵐ (x : α) μ, f x‖ₑ g x‖ₑ) :
    theorem MeasureTheory.rearrangement_mono {α : Type u_1} {ε : Type u_2} {ε' : Type u_3} {m : MeasurableSpace α} [ENorm ε] [ENorm ε'] {f : αε} {g : αε'} {μ : Measure α} {x y : ENNReal} (h1 : ∀ᵐ (x : α) μ, f x‖ₑ g x‖ₑ) (h2 : x y) :
    theorem MeasureTheory.rearrangement_measurable₀ {α : Type u_1} {ε : Type u_2} {m : MeasurableSpace α} [ENorm ε] {f : αε} {μ : Measure α} :
    Measurable fun (t : ENNReal) => rearrangement f t μ
    theorem MeasureTheory.rearrangement_measurable {α : Type u_1} {ε : Type u_2} {m : MeasurableSpace α} [ENorm ε] {f : αε} {μ : Measure α} {α' : Type u_4} {m✝ : MeasurableSpace α'} {g : α'ENNReal} (hg : Measurable g) :
    Measurable fun (y : α') => rearrangement f (g y) μ
    theorem MeasureTheory.rearrangement_distribution_le {α : Type u_1} {ε : Type u_2} {m : MeasurableSpace α} [ENorm ε] {f : αε} {μ : Measure α} {x : ENNReal} :
    theorem MeasureTheory.distribution_rearrangement_le {α : Type u_1} {ε : Type u_2} {m : MeasurableSpace α} [ENorm ε] {f : αε} {μ : Measure α} {x : ENNReal} :
    theorem MeasureTheory.lt_rearrangement_iff {α : Type u_1} {ε : Type u_2} {m : MeasurableSpace α} [ENorm ε] {f : αε} {μ : Measure α} {t y : ENNReal} :
    y < rearrangement f t μ t < distribution f y μ
    theorem MeasureTheory.distribution_rearrangement {α : Type u_1} {ε : Type u_2} {m : MeasurableSpace α} [ENorm ε] {f : αε} {μ : Measure α} {t : NNReal} :
    distribution f (↑t) μ = distribution (fun (x : ENNReal) => rearrangement f x μ) (↑t) volume
    theorem MeasureTheory.rearrangement_add_le {α : Type u_1} {m : MeasurableSpace α} {μ : Measure α} {x y : ENNReal} {ε : Type u_4} [TopologicalSpace ε] [ESeminormedAddMonoid ε] {f g : αε} :
    rearrangement (f + g) (x + y) μ rearrangement f x μ + rearrangement g y μ
    theorem MeasureTheory.continuousWithinAt_rearrangement {α : Type u_1} {ε : Type u_2} {m : MeasurableSpace α} [ENorm ε] {f : αε} {μ : Measure α} (x : ENNReal) :
    ContinuousWithinAt (fun (x : ENNReal) => rearrangement f x μ) (Set.Ici x) x
    theorem MeasureTheory.volume_lt_rearrangement {α : Type u_1} {ε : Type u_2} {m : MeasurableSpace α} [ENorm ε] {f : αε} {μ : Measure α} [TopologicalSpace ε] (hf : AEStronglyMeasurable f μ) (s : ENNReal) :
    theorem MeasureTheory.lintegral_rearrangement_pow {α : Type u_1} {ε : Type u_2} {m : MeasurableSpace α} [ENorm ε] {f : αε} {μ : Measure α} [TopologicalSpace ε] (hf : AEStronglyMeasurable f μ) {p : } (hp : 1 p) :
    ∫⁻ (t : ), rearrangement f (ENNReal.ofReal t) μ ^ p = ∫⁻ (x : α), f x‖ₑ μ
    theorem MeasureTheory.sSup_rearrangement {α : Type u_1} {ε : Type u_2} {m : MeasurableSpace α} [ENorm ε] {f : αε} {μ : Measure α} :
    ⨆ (t : ENNReal), ⨆ (_ : t > 0), rearrangement f t μ = rearrangement f 0 μ
    theorem MeasureTheory.essSup_nnnorm_eq_rearrangement_zero {α : Type u_1} {ε : Type u_2} {m : MeasurableSpace α} [ENorm ε] {f : αε} {μ : Measure α} :
    essSup (fun (x : α) => f x‖ₑ) μ = rearrangement f 0 μ
    @[simp]
    theorem MeasureTheory.tendsto_rearrangement {α : Type u_1} {ε : Type u_2} {m : MeasurableSpace α} [ENorm ε] {f : αε} {μ : Measure α} [TopologicalSpace ε] {s : αε} (hs : ∀ᶠ (i : ) in Filter.atTop, AEStronglyMeasurable (s i) μ) (hf : AEStronglyMeasurable f μ) (h2s : ∀ᵐ (x : α) μ, Monotone fun (n : ) => s n x‖ₑ) (h : ∀ᵐ (x : α) μ, Filter.Tendsto (fun (x_1 : ) => s x_1 x‖ₑ) Filter.atTop (nhds f x‖ₑ)) :
    theorem MeasureTheory.liminf_rearrangement {α : Type u_1} {ε : Type u_2} {m : MeasurableSpace α} [ENorm ε] {f : αε} {μ : Measure α} {x : ENNReal} [TopologicalSpace ε] {s : αε} (hs : ∀ᶠ (i : ) in Filter.atTop, AEStronglyMeasurable (s i) μ) (hf : AEStronglyMeasurable f μ) (h : ∀ᵐ (x : α) μ, f x‖ₑ Filter.liminf (fun (x_1 : ) => s x_1 x‖ₑ) Filter.atTop) :
    rearrangement f x μ Filter.liminf (fun (i : ) => rearrangement (s i) x μ) Filter.atTop
    theorem MeasureTheory.distribution_indicator_le_distribution {α : Type u_1} {ε : Type u_2} {m : MeasurableSpace α} [ENorm ε] {μ : Measure α} [TopologicalSpace ε] [Zero ε] {f : αε} (hf : AEStronglyMeasurable f μ) {X : Set α} (hX : MeasurableSet X) (t : ENNReal) (μ✝ : Measure α) :
    distribution (X.indicator f) t μ✝ distribution f t μ✝
    theorem MeasureTheory.distribution_indicator_le_measure {α : Type u_1} {ε : Type u_2} {m : MeasurableSpace α} [ENorm ε] {μ : Measure α} [TopologicalSpace ε] [Zero ε] {f : αε} (hf : AEStronglyMeasurable f μ) {X : Set α} (hX : MeasurableSet X) (t : ENNReal) (μ✝ : Measure α) :
    distribution (X.indicator f) t μ✝ μ✝ X
    theorem MeasureTheory.rearrangement_indicator_le' {α : Type u_1} {ε : Type u_2} {m : MeasurableSpace α} [ENorm ε] {μ : Measure α} [TopologicalSpace ε] [Zero ε] {f : αε} (hf : AEStronglyMeasurable f μ) {X : Set α} (hX : MeasurableSet X) (t : ENNReal) (μ✝ : Measure α) :
    rearrangement (X.indicator f) t μ✝ (Set.Iio (μ✝ X)).indicator (fun (x : ENNReal) => rearrangement f x μ✝) t

    Version of rearrangement_indicator_le for t : ℝ≥0∞

    theorem MeasureTheory.integral_norm_le_integral_rearrangement {α : Type u_1} {ε : Type u_2} {m : MeasurableSpace α} [ENorm ε] {μ : Measure α} [TopologicalSpace ε] {f : αε} (hf : AEStronglyMeasurable f μ) {X : Set α} (hX : MeasurableSet X) :
    ∫⁻ (x : α), f x‖ₑ μ ∫⁻ (t : ENNReal) in Set.Iio (μ X), rearrangement f t μ
    theorem MeasureTheory.lintegral_rearrangement_eq {α : Type u_1} {ε : Type u_2} {m : MeasurableSpace α} [ENorm ε] {μ : Measure α} [TopologicalSpace ε] [NoAtoms μ] {f : αε} (hf : AEStronglyMeasurable f μ) {t : NNReal} :
    ∫⁻ (s : NNReal) in Set.Iio t, rearrangement f (↑s) μ = ⨆ (E : Set α), ⨆ (_ : μ E t), ∫⁻ (x : α) in E, f x‖ₑ μ
    theorem MeasureTheory.lintegral_rearrangement_add_rearrangement_le_add_lintegral {α : Type u_1} {ε : Type u_2} {m : MeasurableSpace α} [ENorm ε] {μ : Measure α} [TopologicalSpace ε] [ESeminormedAddMonoid ε] [NoAtoms μ] {f g : αε} (hf : AEStronglyMeasurable f μ) (hg : AEStronglyMeasurable g μ) {t : NNReal} :
    ∫⁻ (s : NNReal) in Set.Iio t, rearrangement (f + g) (↑s) μ (∫⁻ (s : NNReal) in Set.Iio t, rearrangement f (↑s) μ) + ∫⁻ (s : NNReal) in Set.Iio t, rearrangement g (↑s) μ