theorem
MeasureTheory.eLorentzNorm_congr_ae
{α : Type u_1}
{ε' : Type u_3}
{m0 : MeasurableSpace α}
{p q : ENNReal}
{μ : Measure α}
[ENorm ε']
{f g : α → ε'}
(hfg : f =ᶠ[ae μ] g)
:
@[simp]
theorem
MeasureTheory.eLorentzNorm_enorm
{α : Type u_1}
{ε : Type u_2}
{m0 : MeasurableSpace α}
{p q : ENNReal}
{μ : Measure α}
[ENorm ε]
(f : α → ε)
:
theorem
MeasureTheory.eLorentzNorm'_eq_zero_of_ae_enorm_zero
{α : Type u_1}
{m0 : MeasurableSpace α}
{p q : ENNReal}
{μ : Measure α}
{ε : Type u_4}
[TopologicalSpace ε]
[ESeminormedAddMonoid ε]
{f : α → ε}
(h : enorm ∘ f =ᶠ[ae μ] 0)
(p_ne_zero : p ≠ 0)
(p_ne_top : p ≠ ⊤)
:
theorem
MeasureTheory.eLorentzNorm_eq_zero_of_ae_enorm_zero
{α : Type u_1}
{m0 : MeasurableSpace α}
{p q : ENNReal}
{μ : Measure α}
{ε : Type u_4}
[TopologicalSpace ε]
[ESeminormedAddMonoid ε]
{f : α → ε}
(h : enorm ∘ f =ᶠ[ae μ] 0)
:
theorem
MeasureTheory.eLorentzNorm'_eq_zero_of_ae_zero
{α : Type u_1}
{m0 : MeasurableSpace α}
{p q : ENNReal}
{μ : Measure α}
{ε : Type u_4}
[TopologicalSpace ε]
[ESeminormedAddMonoid ε]
{f : α → ε}
(p_ne_zero : p ≠ 0)
(p_ne_top : p ≠ ⊤)
(h : f =ᶠ[ae μ] 0)
:
theorem
MeasureTheory.eLorentzNorm_eq_zero_of_ae_zero
{α : Type u_1}
{m0 : MeasurableSpace α}
{p q : ENNReal}
{μ : Measure α}
{ε : Type u_4}
[TopologicalSpace ε]
[ESeminormedAddMonoid ε]
{f : α → ε}
(h : f =ᶠ[ae μ] 0)
:
theorem
MeasureTheory.ae_eq_zero_of_eLorentzNorm'_eq_zero
{α : Type u_1}
{m0 : MeasurableSpace α}
{p q : ENNReal}
{μ : Measure α}
{ε : Type u_5}
[TopologicalSpace ε]
[ENormedAddMonoid ε]
{f : α → ε}
(p_ne_zero : p ≠ 0)
(p_ne_top : p ≠ ⊤)
(q_ne_zero : q ≠ 0)
(h : eLorentzNorm' f p q μ = 0)
:
theorem
MeasureTheory.eLorentzNorm'_eq_zero_iff
{α : Type u_1}
{m0 : MeasurableSpace α}
{p q : ENNReal}
{μ : Measure α}
{ε : Type u_5}
[TopologicalSpace ε]
[ENormedAddMonoid ε]
{f : α → ε}
(p_ne_zero : p ≠ 0)
(p_ne_top : p ≠ ⊤)
(q_ne_zero : q ≠ 0)
:
theorem
MeasureTheory.eLorentzNorm_eq_zero_iff
{α : Type u_1}
{m0 : MeasurableSpace α}
{p q : ENNReal}
{μ : Measure α}
{ε : Type u_5}
[TopologicalSpace ε]
[ENormedAddMonoid ε]
{f : α → ε}
(p_ne_zero : p ≠ 0)
(q_ne_zero : q ≠ 0)
:
@[simp]
theorem
MeasureTheory.eLorentzNorm_zero
{α : Type u_1}
{m0 : MeasurableSpace α}
{p q : ENNReal}
{μ : Measure α}
{ε : Type u_4}
[TopologicalSpace ε]
[ESeminormedAddMonoid ε]
:
@[simp]
theorem
MeasureTheory.eLorentzNorm_zero'
{α : Type u_1}
{m0 : MeasurableSpace α}
{p q : ENNReal}
{μ : Measure α}
{ε : Type u_4}
[TopologicalSpace ε]
[ESeminormedAddMonoid ε]
:
theorem
MeasureTheory.eLorentzNorm_eq_eLpNorm
{α : Type u_1}
{m0 : MeasurableSpace α}
{p : ENNReal}
{μ : Measure α}
{ε : Type u_4}
[TopologicalSpace ε]
[ESeminormedAddMonoid ε]
{f : α → ε}
(hf : AEStronglyMeasurable f μ)
:
theorem
MeasureTheory.essSup_le_iSup
{α : Type u_5}
{β : Type u_6}
{m : MeasurableSpace α}
{μ : Measure α}
[CompleteLattice β]
(f : α → β)
:
theorem
MeasureTheory.ContinuousWithinAt.ennreal_mul
{X : Type u_5}
[TopologicalSpace X]
{f g : X → ENNReal}
{s : Set X}
{t : X}
(hf : ContinuousWithinAt f s t)
(hg : ContinuousWithinAt g s t)
(h₁ : f t ≠ 0 ∨ g t ≠ ⊤)
(h₂ : g t ≠ 0 ∨ f t ≠ ⊤)
:
ContinuousWithinAt (fun (x : X) => f x * g x) s t
theorem
MeasureTheory.ContinuousWithinAt.ennrpow_const
{α : Type u_1}
[TopologicalSpace α]
{f : α → ENNReal}
{s : Set α}
{x : α}
{p : ℝ}
(hf : ContinuousWithinAt f s x)
:
ContinuousWithinAt (fun (x : α) => f x ^ p) s x
theorem
MeasureTheory.eLorentzNorm_eq_wnorm
{α : Type u_1}
{m0 : MeasurableSpace α}
{p : ENNReal}
{μ : Measure α}
{ε : Type u_4}
[TopologicalSpace ε]
[ESeminormedAddMonoid ε]
(hp : p ≠ 0)
{f : α → ε}
:
theorem
MeasureTheory.eLorentzNorm'_indicator_const
{α : Type u_1}
{m0 : MeasurableSpace α}
{p : ENNReal}
{μ : Measure α}
{ε : Type u_4}
[TopologicalSpace ε]
[ESeminormedAddMonoid ε]
{a : ε}
(ha : ‖a‖ₑ ≠ ⊤)
{s : Set α}
(p_ne_zero : p ≠ 0)
(p_ne_top : p ≠ ⊤)
:
theorem
MeasureTheory.eLorentzNorm'_indicator_const'
{α : Type u_1}
{m0 : MeasurableSpace α}
{p q : ENNReal}
{μ : Measure α}
{ε : Type u_4}
[TopologicalSpace ε]
[ESeminormedAddMonoid ε]
{a : ε}
{s : Set α}
(p_ne_zero : p ≠ 0)
(p_ne_top : p ≠ ⊤)
(q_ne_zero : q ≠ 0)
(q_ne_top : q ≠ ⊤)
:
@[simp]
theorem
MeasureTheory.eLorentzNorm_indicator_const
{α : Type u_1}
{m0 : MeasurableSpace α}
{p q : ENNReal}
{μ : Measure α}
{ε : Type u_4}
[TopologicalSpace ε]
[ESeminormedAddMonoid ε]
{a : ε}
{s : Set α}
:
theorem
MeasureTheory.MemLorentz_iff_MemLp
{α : Type u_1}
{m0 : MeasurableSpace α}
{p : ENNReal}
{μ : Measure α}
{ε : Type u_4}
[TopologicalSpace ε]
[ESeminormedAddMonoid ε]
{f : α → ε}
:
theorem
MeasureTheory.MemLorentz_of_MemLorentz_ge
{α : Type u_1}
{m0 : MeasurableSpace α}
{p : ENNReal}
{μ : Measure α}
{ε : Type u_4}
[TopologicalSpace ε]
[ESeminormedAddMonoid ε]
{r₁ r₂ : ENNReal}
(r₁_pos : 0 < r₁)
(r₁_le_r₂ : r₁ ≤ r₂)
{f : α → ε}
(hf : MemLorentz f p r₁ μ)
:
MemLorentz f p r₂ μ
theorem
MeasureTheory.MemLorentz.memLp
{α : Type u_1}
{m0 : MeasurableSpace α}
{p q : ENNReal}
{μ : Measure α}
{ε : Type u_4}
[TopologicalSpace ε]
[ESeminormedAddMonoid ε]
{f : α → ε}
(hf : MemLorentz f p q μ)
(h : q ∈ Set.Ioc 0 p)
:
MemLp f p μ