Documentation

Carleson.ToMathlib.MeasureTheory.Function.LorentzSeminorm.Basic

theorem MeasureTheory.eLorentzNorm'_mono_enorm_ae {α : Type u_1} {ε : Type u_2} {ε' : Type u_3} {m0 : MeasurableSpace α} {p q : ENNReal} {μ : Measure α} [ENorm ε] [ENorm ε'] {f : αε'} {g : αε} (h : ∀ᵐ (x : α) μ, f x‖ₑ g x‖ₑ) :
eLorentzNorm' f p q μ eLorentzNorm' g p q μ
theorem MeasureTheory.eLorentzNorm_mono_enorm_ae {α : Type u_1} {ε : Type u_2} {ε' : Type u_3} {m0 : MeasurableSpace α} {p q : ENNReal} {μ : Measure α} [ENorm ε] [ENorm ε'] {f : αε'} {g : αε} (h : ∀ᵐ (x : α) μ, f x‖ₑ g x‖ₑ) :
eLorentzNorm f p q μ eLorentzNorm g p q μ
theorem MeasureTheory.eLorentzNorm_congr_enorm_ae {α : Type u_1} {ε : Type u_2} {ε' : Type u_3} {m0 : MeasurableSpace α} {p q : ENNReal} {μ : Measure α} [ENorm ε] [ENorm ε'] {f : αε'} {g : αε} (hfg : ∀ᵐ (x : α) μ, f x‖ₑ = g x‖ₑ) :
eLorentzNorm f p q μ = eLorentzNorm g p q μ
theorem MeasureTheory.eLorentzNorm_congr_ae {α : Type u_1} {ε' : Type u_3} {m0 : MeasurableSpace α} {p q : ENNReal} {μ : Measure α} [ENorm ε'] {f g : αε'} (hfg : f =ᶠ[ae μ] g) :
eLorentzNorm f p q μ = eLorentzNorm g p q μ
@[simp]
theorem MeasureTheory.eLorentzNorm_enorm {α : Type u_1} {ε : Type u_2} {m0 : MeasurableSpace α} {p q : ENNReal} {μ : Measure α} [ENorm ε] (f : αε) :
eLorentzNorm (fun (x : α) => f x‖ₑ) p q μ = eLorentzNorm f p q μ
theorem MeasureTheory.eLorentzNorm'_eq_zero_of_ae_enorm_zero {α : Type u_1} {m0 : MeasurableSpace α} {p q : ENNReal} {μ : Measure α} {ε : Type u_4} [TopologicalSpace ε] [ESeminormedAddMonoid ε] {f : αε} (h : enorm f =ᶠ[ae μ] 0) (p_ne_zero : p 0) (p_ne_top : p ) :
eLorentzNorm' f p q μ = 0
theorem MeasureTheory.eLorentzNorm_eq_zero_of_ae_enorm_zero {α : Type u_1} {m0 : MeasurableSpace α} {p q : ENNReal} {μ : Measure α} {ε : Type u_4} [TopologicalSpace ε] [ESeminormedAddMonoid ε] {f : αε} (h : enorm f =ᶠ[ae μ] 0) :
eLorentzNorm f p q μ = 0
theorem MeasureTheory.eLorentzNorm'_eq_zero_of_ae_zero {α : Type u_1} {m0 : MeasurableSpace α} {p q : ENNReal} {μ : Measure α} {ε : Type u_4} [TopologicalSpace ε] [ESeminormedAddMonoid ε] {f : αε} (p_ne_zero : p 0) (p_ne_top : p ) (h : f =ᶠ[ae μ] 0) :
eLorentzNorm' f p q μ = 0
theorem MeasureTheory.eLorentzNorm_eq_zero_of_ae_zero {α : Type u_1} {m0 : MeasurableSpace α} {p q : ENNReal} {μ : Measure α} {ε : Type u_4} [TopologicalSpace ε] [ESeminormedAddMonoid ε] {f : αε} (h : f =ᶠ[ae μ] 0) :
eLorentzNorm f p q μ = 0
theorem MeasureTheory.ae_eq_zero_of_eLorentzNorm'_eq_zero {α : Type u_1} {m0 : MeasurableSpace α} {p q : ENNReal} {μ : Measure α} {ε : Type u_5} [TopologicalSpace ε] [ENormedAddMonoid ε] {f : αε} (p_ne_zero : p 0) (p_ne_top : p ) (q_ne_zero : q 0) (h : eLorentzNorm' f p q μ = 0) :
f =ᶠ[ae μ] 0
theorem MeasureTheory.eLorentzNorm'_eq_zero_iff {α : Type u_1} {m0 : MeasurableSpace α} {p q : ENNReal} {μ : Measure α} {ε : Type u_5} [TopologicalSpace ε] [ENormedAddMonoid ε] {f : αε} (p_ne_zero : p 0) (p_ne_top : p ) (q_ne_zero : q 0) :
eLorentzNorm' f p q μ = 0 f =ᶠ[ae μ] 0
theorem MeasureTheory.eLorentzNorm_eq_zero_iff {α : Type u_1} {m0 : MeasurableSpace α} {p q : ENNReal} {μ : Measure α} {ε : Type u_5} [TopologicalSpace ε] [ENormedAddMonoid ε] {f : αε} (p_ne_zero : p 0) (q_ne_zero : q 0) :
eLorentzNorm f p q μ = 0 f =ᶠ[ae μ] 0
@[simp]
theorem MeasureTheory.eLorentzNorm_zero {α : Type u_1} {m0 : MeasurableSpace α} {p q : ENNReal} {μ : Measure α} {ε : Type u_4} [TopologicalSpace ε] [ESeminormedAddMonoid ε] :
eLorentzNorm 0 p q μ = 0
@[simp]
theorem MeasureTheory.eLorentzNorm_zero' {α : Type u_1} {m0 : MeasurableSpace α} {p q : ENNReal} {μ : Measure α} {ε : Type u_4} [TopologicalSpace ε] [ESeminormedAddMonoid ε] :
eLorentzNorm (fun (x : α) => 0) p q μ = 0
theorem MeasureTheory.eLorentzNorm_eq_eLpNorm {α : Type u_1} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} {ε : Type u_4} [TopologicalSpace ε] [ESeminormedAddMonoid ε] {f : αε} (hf : AEStronglyMeasurable f μ) :
eLorentzNorm f p p μ = eLpNorm f p μ
theorem MeasureTheory.essSup_le_iSup {α : Type u_5} {β : Type u_6} {m : MeasurableSpace α} {μ : Measure α} [CompleteLattice β] (f : αβ) :
essSup f μ ⨆ (i : α), f i
theorem MeasureTheory.iSup_le_essSup {α : Type u_1} {m0 : MeasurableSpace α} {μ : Measure α} {f : αENNReal} (h : ∀ {x : α} {a : ENNReal}, a < f xμ {y : α | a < f y} 0) :
⨆ (x : α), f x essSup f μ
theorem MeasureTheory.helper {f : ENNRealENNReal} {x : ENNReal} (hx : x ) (hf : ContinuousWithinAt f (Set.Ioi x) x) {a : ENNReal} (ha : a < f x) :
volume {y : ENNReal | a < f y} 0
theorem MeasureTheory.ContinuousWithinAt.ennreal_mul {X : Type u_5} [TopologicalSpace X] {f g : XENNReal} {s : Set X} {t : X} (hf : ContinuousWithinAt f s t) (hg : ContinuousWithinAt g s t) (h₁ : f t 0 g t ) (h₂ : g t 0 f t ) :
ContinuousWithinAt (fun (x : X) => f x * g x) s t
theorem MeasureTheory.ContinuousWithinAt.ennrpow_const {α : Type u_1} [TopologicalSpace α] {f : αENNReal} {s : Set α} {x : α} {p : } (hf : ContinuousWithinAt f s x) :
ContinuousWithinAt (fun (x : α) => f x ^ p) s x
theorem MeasureTheory.eLorentzNorm_eq_wnorm {α : Type u_1} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} {ε : Type u_4} [TopologicalSpace ε] [ESeminormedAddMonoid ε] (hp : p 0) {f : αε} :
eLorentzNorm f p μ = wnorm f p μ
theorem MeasureTheory.eLorentzNorm'_indicator_const {α : Type u_1} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} {ε : Type u_4} [TopologicalSpace ε] [ESeminormedAddMonoid ε] {a : ε} (ha : a‖ₑ ) {s : Set α} (p_ne_zero : p 0) (p_ne_top : p ) :
theorem MeasureTheory.eLorentzNorm'_indicator_const' {α : Type u_1} {m0 : MeasurableSpace α} {p q : ENNReal} {μ : Measure α} {ε : Type u_4} [TopologicalSpace ε] [ESeminormedAddMonoid ε] {a : ε} {s : Set α} (p_ne_zero : p 0) (p_ne_top : p ) (q_ne_zero : q 0) (q_ne_top : q ) :
@[simp]
theorem MeasureTheory.eLorentzNorm_indicator_const {α : Type u_1} {m0 : MeasurableSpace α} {p q : ENNReal} {μ : Measure α} {ε : Type u_4} [TopologicalSpace ε] [ESeminormedAddMonoid ε] {a : ε} {s : Set α} :
theorem MeasureTheory.MemLorentz_iff_MemLp {α : Type u_1} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} {ε : Type u_4} [TopologicalSpace ε] [ESeminormedAddMonoid ε] {f : αε} :
MemLorentz f p p μ MemLp f p μ
theorem MeasureTheory.MemLorentz_of_MemLorentz_ge {α : Type u_1} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} {ε : Type u_4} [TopologicalSpace ε] [ESeminormedAddMonoid ε] {r₁ r₂ : ENNReal} (r₁_pos : 0 < r₁) (r₁_le_r₂ : r₁ r₂) {f : αε} (hf : MemLorentz f p r₁ μ) :
MemLorentz f p r₂ μ
theorem MeasureTheory.MemLorentz.memLp {α : Type u_1} {m0 : MeasurableSpace α} {p q : ENNReal} {μ : Measure α} {ε : Type u_4} [TopologicalSpace ε] [ESeminormedAddMonoid ε] {f : αε} (hf : MemLorentz f p q μ) (h : q Set.Ioc 0 p) :
MemLp f p μ