Documentation

Carleson.ForestOperator.L2Estimate

theorem CMB_defaultA_two_eq {a : } :
CMB (↑(defaultA a)) 2 = 2 ^ (a + 3 / 2)
theorem TileStructure.Forest.eLpNorm_MB_le {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {𝕜 : Type u_3} [RCLike 𝕜] {f : X𝕜} (hf : MeasureTheory.BoundedCompactSupport f) :

Section 7.2 and Lemma 7.2.1 #

@[irreducible]

The constant used in nontangential_operator_bound. Has value 2 ^ (103 * a ^ 3) in the blueprint.

Equations
Instances For
    theorem TileStructure.Forest.C7_2_2_def (a : ) :
    C7_2_2 a = 2 ^ (103 * a ^ 3)
    theorem TileStructure.Forest.nontangential_operator_bound {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {f : X} (hf : MeasureTheory.BoundedCompactSupport f) (θ : Θ X) :

    Lemma 7.2.2.

    def TileStructure.Forest.kissing {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] (I : Grid X) :

    The set of cubes in Lemma 7.2.4.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      theorem TileStructure.Forest.subset_of_kissing {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {I J : Grid X} (h : J kissing I) :
      Metric.ball (c J) ((defaultD a) ^ s J / 4) Metric.ball (c I) (33 * (defaultD a) ^ s I)
      theorem TileStructure.Forest.volume_le_of_kissing {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {I J : Grid X} (h : J kissing I) :
      MeasureTheory.volume (Metric.ball (c I) (33 * (defaultD a) ^ s I)) 2 ^ (9 * a) * MeasureTheory.volume (Metric.ball (c J) ((defaultD a) ^ s J / 4))
      theorem TileStructure.Forest.pairwiseDisjoint_of_kissing {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {I : Grid X} :
      (↑(kissing I)).PairwiseDisjoint fun (i : Grid X) => Metric.ball (c i) ((defaultD a) ^ s i / 4)
      theorem TileStructure.Forest.boundary_overlap {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] (I : Grid X) :
      (kissing I).card 2 ^ (9 * a)

      Lemma 7.2.4.

      theorem TileStructure.Forest.C7_2_3_def (a : ) :
      C7_2_3 a = 2 ^ (12 * a)
      @[irreducible]
      Equations
      Instances For
        theorem TileStructure.Forest.boundary_operator_bound {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {n : } {t : Forest X n} {u : 𝔓 X} {f : X} (hf : MeasureTheory.BoundedCompactSupport f) (hu : u t) :

        Lemma 7.2.3.

        theorem TileStructure.Forest.C7_2_1_def (a : ) :
        C7_2_1 a = 2 ^ (152 * a ^ 3)
        @[irreducible]

        The constant used in tree_projection_estimate. Originally had value 2 ^ (104 * a ^ 3) in the blueprint, but that seems to be a mistake.

        Equations
        Instances For
          theorem TileStructure.Forest.tree_projection_estimate {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {n : } {t : Forest X n} {u : 𝔓 X} {f g : X} (hf : MeasureTheory.BoundedCompactSupport f) (hg : MeasureTheory.BoundedCompactSupport g) (hu : u t) :
          ∫ (x : X), (starRingEnd ) (g x) * carlesonSum ((fun (x : 𝔓 X) => t.𝔗 x) u) f x‖₊ (C7_2_1 a) * MeasureTheory.eLpNorm (approxOnCube (𝓙 ((fun (x : 𝔓 X) => t.𝔗 x) u)) fun (x : X) => f x) 2 MeasureTheory.volume * MeasureTheory.eLpNorm (approxOnCube (𝓛 ((fun (x : 𝔓 X) => t.𝔗 x) u)) fun (x : X) => g x) 2 MeasureTheory.volume

          Lemma 7.2.1.