Documentation

Carleson.ForestOperator.L2Estimate

Section 7.2 and Lemma 7.2.1 #

@[irreducible]

The constant used in nontangential_operator_bound. Has value 2 ^ (103 * a ^ 3) in the blueprint.

Equations
Instances For
    theorem TileStructure.Forest.nontangential_operator_bound {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {f : X} (hf : MeasureTheory.BoundedCompactSupport f) (θ : Θ X) :
    MeasureTheory.eLpNorm (fun (x : X) => (TileStructure.Forest.nontangentialMaximalFunction θ f x).toReal) 2 MeasureTheory.volume MeasureTheory.eLpNorm f 2 MeasureTheory.volume

    Lemma 7.2.2.

    def TileStructure.Forest.kissing {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] (I : Grid X) :

    The set of cubes in Lemma 7.2.4.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      theorem TileStructure.Forest.subset_of_kissing {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {I J : Grid X} (h : J TileStructure.Forest.kissing I) :
      Metric.ball (c J) ((defaultD a) ^ s J / 4) Metric.ball (c I) (33 * (defaultD a) ^ s I)
      theorem TileStructure.Forest.volume_le_of_kissing {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {I J : Grid X} (h : J TileStructure.Forest.kissing I) :
      MeasureTheory.volume (Metric.ball (c I) (33 * (defaultD a) ^ s I)) 2 ^ (9 * a) * MeasureTheory.volume (Metric.ball (c J) ((defaultD a) ^ s J / 4))
      theorem TileStructure.Forest.pairwiseDisjoint_of_kissing {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {I : Grid X} :
      (↑(TileStructure.Forest.kissing I)).PairwiseDisjoint fun (i : Grid X) => Metric.ball (c i) ((defaultD a) ^ s i / 4)
      theorem TileStructure.Forest.boundary_overlap {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] (I : Grid X) :

      Lemma 7.2.4.

      theorem TileStructure.Forest.boundary_operator_bound {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {n : } {t : TileStructure.Forest X n} {u : 𝔓 X} {f : X} (hf : MeasureTheory.BoundedCompactSupport f) (hu : u t) :
      MeasureTheory.eLpNorm (fun (x : X) => (t.boundaryOperator u f x).toReal) 2 MeasureTheory.volume MeasureTheory.eLpNorm f 2 MeasureTheory.volume

      Lemma 7.2.3.

      @[irreducible]

      The constant used in nontangential_operator_bound. Has value 2 ^ (104 * a ^ 3) in the blueprint.

      Equations
      Instances For
        theorem TileStructure.Forest.tree_projection_estimate {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {n : } {t : TileStructure.Forest X n} {u : 𝔓 X} {f g : X} (hf : MeasureTheory.BoundedCompactSupport f) (hg : MeasureTheory.BoundedCompactSupport g) (hu : u t) :
        ∫ (x : X), (starRingEnd ) (g x) * carlesonSum ((fun (x : 𝔓 X) => t.𝔗 x) u) f x‖₊ (TileStructure.Forest.C7_2_1 a) * MeasureTheory.eLpNorm (TileStructure.Forest.approxOnCube (TileStructure.Forest.𝓙 ((fun (x : 𝔓 X) => t.𝔗 x) u)) fun (x : X) => f x) 2 MeasureTheory.volume * MeasureTheory.eLpNorm (TileStructure.Forest.approxOnCube (TileStructure.Forest.𝓛 ((fun (x : 𝔓 X) => t.𝔗 x) u)) fun (x : X) => g x) 2 MeasureTheory.volume

        Lemma 7.2.1.