Documentation

Carleson.DoublingMeasure

A doubling measure is a measure on a metric space with the condition that doubling the radius of a ball only increases the volume by a constant factor, independent of the ball.

Instances
    theorem MeasureTheory.ball_subset_ball_of_le {X : Type u_1} [PseudoMetricSpace X] {x x' : X} {r r' : } (hr : dist x x' + r' r) :
    theorem MeasureTheory.IsDoubling.mono {X : Type u_1} [PseudoMetricSpace X] {A : NNReal} [MeasurableSpace X] {μ : MeasureTheory.Measure X} [μ.IsDoubling A] {A' : NNReal} (h : A A') :
    μ.IsDoubling A'
    theorem MeasureTheory.measure_real_ball_two_le_same {X : Type u_1} [PseudoMetricSpace X] {A : NNReal} [MeasurableSpace X] {μ : MeasureTheory.Measure X} [μ.IsDoubling A] [ProperSpace X] [MeasureTheory.IsFiniteMeasureOnCompacts μ] (x : X) (r : ) :
    μ.real (Metric.ball x (2 * r)) A * μ.real (Metric.ball x r)
    theorem MeasureTheory.measure_real_ball_pos {X : Type u_1} [PseudoMetricSpace X] [MeasurableSpace X] {μ : MeasureTheory.Measure X} [ProperSpace X] [MeasureTheory.IsFiniteMeasureOnCompacts μ] [μ.IsOpenPosMeasure] (x : X) {r : } (hr : 0 < r) :
    0 < μ.real (Metric.ball x r)
    theorem MeasureTheory.one_le_A {X : Type u_1} [PseudoMetricSpace X] {A : NNReal} [MeasurableSpace X] (μ : MeasureTheory.Measure X) [μ.IsDoubling A] [ProperSpace X] [MeasureTheory.IsFiniteMeasureOnCompacts μ] [Nonempty X] [μ.IsOpenPosMeasure] :
    1 A
    theorem MeasureTheory.A_pos {X : Type u_1} [PseudoMetricSpace X] {A : NNReal} [MeasurableSpace X] (μ : MeasureTheory.Measure X) [μ.IsDoubling A] [ProperSpace X] [MeasureTheory.IsFiniteMeasureOnCompacts μ] [Nonempty X] [μ.IsOpenPosMeasure] :
    0 < A
    theorem MeasureTheory.A_pos' {X : Type u_1} [PseudoMetricSpace X] {A : NNReal} [MeasurableSpace X] (μ : MeasureTheory.Measure X) [μ.IsDoubling A] [ProperSpace X] [MeasureTheory.IsFiniteMeasureOnCompacts μ] [Nonempty X] [μ.IsOpenPosMeasure] :
    0 < A
    theorem MeasureTheory.measure_ball_four_le_same {X : Type u_1} [PseudoMetricSpace X] {A : NNReal} [MeasurableSpace X] {μ : MeasureTheory.Measure X} [μ.IsDoubling A] [ProperSpace X] [MeasureTheory.IsFiniteMeasureOnCompacts μ] (x : X) (r : ) :
    μ.real (Metric.ball x (4 * r)) A ^ 2 * μ.real (Metric.ball x r)
    theorem MeasureTheory.measure_ball_le_pow_two {X : Type u_1} [PseudoMetricSpace X] {A : NNReal} [MeasurableSpace X] {μ : MeasureTheory.Measure X} [μ.IsDoubling A] [ProperSpace X] [MeasureTheory.IsFiniteMeasureOnCompacts μ] {x : X} {r : } {n : } :
    μ.real (Metric.ball x (2 ^ n * r)) A ^ n * μ.real (Metric.ball x r)
    theorem MeasureTheory.measure_ball_le_pow_two' {X : Type u_1} [PseudoMetricSpace X] {A : NNReal} [MeasurableSpace X] {μ : MeasureTheory.Measure X} [μ.IsDoubling A] [ProperSpace X] [MeasureTheory.IsFiniteMeasureOnCompacts μ] {x : X} {r : } {n : } :
    μ (Metric.ball x (2 ^ n * r)) A ^ n * μ (Metric.ball x r)

    The blow-up factor of repeatedly increasing the size of balls.

    Equations
    Instances For
      theorem MeasureTheory.As_pos {X : Type u_1} [PseudoMetricSpace X] {A : NNReal} [MeasurableSpace X] (μ : MeasureTheory.Measure X) [μ.IsDoubling A] [ProperSpace X] [MeasureTheory.IsFiniteMeasureOnCompacts μ] [Nonempty X] [μ.IsOpenPosMeasure] (s : ) :
      theorem MeasureTheory.As_pos' {X : Type u_1} [PseudoMetricSpace X] {A : NNReal} [MeasurableSpace X] (μ : MeasureTheory.Measure X) [μ.IsDoubling A] [ProperSpace X] [MeasureTheory.IsFiniteMeasureOnCompacts μ] [Nonempty X] [μ.IsOpenPosMeasure] (s : ) :
      0 < (MeasureTheory.As A s)
      theorem MeasureTheory.measure_ball_le_same' {X : Type u_1} [PseudoMetricSpace X] {A : NNReal} [MeasurableSpace X] {μ : MeasureTheory.Measure X} [μ.IsDoubling A] [ProperSpace X] [MeasureTheory.IsFiniteMeasureOnCompacts μ] (x : X) {r s r' : } (hsp : 0 < s) (hs : r' s * r) :
      μ (Metric.ball x r') (MeasureTheory.As A s) * μ (Metric.ball x r)
      theorem MeasureTheory.measure_ball_le_same {X : Type u_1} [PseudoMetricSpace X] {A : NNReal} [MeasurableSpace X] {μ : MeasureTheory.Measure X} [μ.IsDoubling A] [ProperSpace X] [MeasureTheory.IsFiniteMeasureOnCompacts μ] (x : X) {r s r' : } (hsp : 0 < s) (hs : r' s * r) :
      μ.real (Metric.ball x r') (MeasureTheory.As A s) * μ.real (Metric.ball x r)
      theorem MeasureTheory.measure_ball_le_of_dist_le' {X : Type u_1} [PseudoMetricSpace X] {A : NNReal} [MeasurableSpace X] {μ : MeasureTheory.Measure X} [μ.IsDoubling A] [ProperSpace X] [MeasureTheory.IsFiniteMeasureOnCompacts μ] {x x' : X} {r r' s : } (hs : 0 < s) (h : dist x x' + r' s * r) :
      μ (Metric.ball x' r') (MeasureTheory.As A s) * μ (Metric.ball x r)
      theorem MeasureTheory.measureNNReal_ball_le_of_dist_le' {X : Type u_1} [PseudoMetricSpace X] {A : NNReal} [MeasurableSpace X] {μ : MeasureTheory.Measure X} [μ.IsDoubling A] [ProperSpace X] [MeasureTheory.IsFiniteMeasureOnCompacts μ] {x x' : X} {r r' s : } (hs : 0 < s) (h : dist x x' + r' s * r) :
      μ.nnreal (Metric.ball x' r') MeasureTheory.As A s * μ.nnreal (Metric.ball x r)
      Equations
      Instances For
        theorem MeasureTheory.measure_ball_le_of_subset {X : Type u_1} [PseudoMetricSpace X] {A : NNReal} [MeasurableSpace X] {μ : MeasureTheory.Measure X} [μ.IsDoubling A] [ProperSpace X] [MeasureTheory.IsFiniteMeasureOnCompacts μ] {x' x : X} {r r' s : } (hs : r' s * r) (hr : Metric.ball x' r Metric.ball x r') :
        μ.real (Metric.ball x (2 * r)) (MeasureTheory.Ai A s) * μ.real (Metric.ball x' r)
        theorem MeasureTheory.measure_ball_two_le_of_subset {X : Type u_1} [PseudoMetricSpace X] {A : NNReal} [MeasurableSpace X] {μ : MeasureTheory.Measure X} [μ.IsDoubling A] [ProperSpace X] [MeasureTheory.IsFiniteMeasureOnCompacts μ] {x' x : X} {r : } (hr : Metric.ball x' r Metric.ball x (2 * r)) :
        μ.real (Metric.ball x (2 * r)) (MeasureTheory.Ai2 A) * μ.real (Metric.ball x' r)
        def MeasureTheory.Np (A : NNReal) (s : ) :
        Equations
        Instances For
          theorem MeasureTheory.card_le_of_le_dist {X : Type u_1} [PseudoMetricSpace X] {A : NNReal} [MeasurableSpace X] [ProperSpace X] (x : X) {r r' s : } (P : Set X) (hs : r' s * r) (hP : P Metric.ball x r') (h2P : ∀ (x y : X), x Py Px yr dist x y) :
          P.Finite Nat.card P MeasureTheory.Np A s
          theorem MeasureTheory.ballsCoverBalls {X : Type u_1} [PseudoMetricSpace X] {A : NNReal} [MeasurableSpace X] [ProperSpace X] {r r' s : } (hs : r' s * r) :
          theorem MeasureTheory.continuous_average {X : Type u_1} [PseudoMetricSpace X] [MeasurableSpace X] {μ : MeasureTheory.Measure X} [ProperSpace X] [MeasureTheory.IsFiniteMeasureOnCompacts μ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace E] {f : XE} (hf : MeasureTheory.LocallyIntegrable f μ) {δ : } (hδ : 0 < δ) :
          Continuous fun (x : X) => ⨍ (y : X) in Metric.ball x δ, f yμ
          theorem MeasureTheory.tendsto_average_zero {X : Type u_1} [PseudoMetricSpace X] [MeasurableSpace X] {μ : MeasureTheory.Measure X} [ProperSpace X] [MeasureTheory.IsFiniteMeasureOnCompacts μ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace E] {f : XE} (hf : MeasureTheory.LocallyIntegrable f μ) {x : X} :
          Filter.Tendsto (fun (δ : ) => ⨍ (y : X) in Metric.ball x δ, f yμ) (nhdsWithin 0 (Set.Ioi 0)) (nhds (f x))
          theorem MeasureTheory.Subsingleton.ball_eq {α : Type u_1} [PseudoMetricSpace α] [Subsingleton α] {x : α} {r : } :
          Metric.ball x r = if r > 0 then {x} else
          Equations
          • =
          class MeasureTheory.DoublingMeasure (X : Type u_1) (A : outParam NNReal) [PseudoMetricSpace X] extends MeasureTheory.MeasureSpace X, ProperSpace X, BorelSpace X, MeasureTheory.volume.Regular, MeasureTheory.volume.IsOpenPosMeasure, MeasureTheory.volume.IsDoubling A :
          Type u_1

          A metric space with a measure and a doubling condition. This is called a "doubling metric measure space" in the blueprint. A will usually be 2 ^ a.

          This class is not Mathlib-ready code, and results moved to Mathlib should be reformulated using a (locally) doubling measure and more minimal other classes.

          Note (F): we currently assume that the space is proper, which we should probably add to the blueprint. Remark: IsUnifLocDoublingMeasure which is a weaker notion in Mathlib.

          Instances
            @[reducible]

            Monotonicity of doubling measure metric spaces in A.

            Equations
            Instances For
              Equations
              • MeasureTheory.InnerProductSpace.DoublingMeasure = MeasureTheory.DoublingMeasure.mk