Documentation

Carleson.DoublingMeasure

Basic definitions and lemmas #

This file contains definitions from Section 2 of the blueprint and used throughout the proof of metric Carleson, as well as results about structures defined in sections 1 and 2 (DoublingMeasure KernelProofData, IsCancellative, FunctionDistances, ...). The constants D, κ, Z from the blueprint are introduce here, and useful inequalities are provided for them (as well as for the constants a and tau).

theorem c_le_100 :
𝕔 100
def defaultD (a : ) :

The constant D from (2.0.1).

Equations
Instances For
    def nnD (a : ) :

    D as an element of ℝ≥0.

    Equations
    Instances For
      def defaultκ (a : ) :

      The constant κ from (2.0.2).

      Equations
      Instances For
        def defaultZ (a : ) :

        The constant Z from (2.0.3).

        Equations
        Instances For
          theorem defaultD_pos (a : ) :
          theorem realD_pos (a : ) :
          0 < (defaultD a)
          theorem realD_nonneg (a : ) :
          0 (defaultD a)
          theorem one_le_realD (a : ) :
          1 (defaultD a)
          theorem defaultD_pow_pos (a : ) (z : ) :
          0 < (defaultD a) ^ z
          theorem mul_defaultD_pow_pos (a : ) {r : } (hr : 0 < r) (z : ) :
          0 < r * (defaultD a) ^ z
          theorem hundred_lt_D {a : } (X : Type u_1) [PseudoMetricSpace X] {K : XX} [hK : KernelProofData a K] :
          100 < defaultD a
          theorem hundred_lt_realD {a : } (X : Type u_1) [PseudoMetricSpace X] {K : XX} [hK : KernelProofData a K] :
          100 < (defaultD a)
          theorem twentyfive_le_realD {a : } (X : Type u_1) [PseudoMetricSpace X] {K : XX} [hK : KernelProofData a K] :
          25 (defaultD a)
          theorem eight_le_realD {a : } (X : Type u_1) [PseudoMetricSpace X] {K : XX} [hK : KernelProofData a K] :
          8 (defaultD a)
          theorem five_le_realD {a : } (X : Type u_1) [PseudoMetricSpace X] {K : XX} [hK : KernelProofData a K] :
          5 (defaultD a)
          theorem four_le_realD {a : } (X : Type u_1) [PseudoMetricSpace X] {K : XX} [hK : KernelProofData a K] :
          4 (defaultD a)
          theorem one_lt_realD {a : } (X : Type u_1) [PseudoMetricSpace X] {K : XX} [hK : KernelProofData a K] :
          1 < (defaultD a)
          theorem a_pos {a : } (X : Type u_1) [PseudoMetricSpace X] {K : XX} [hK : KernelProofData a K] :
          0 < a
          theorem cast_a_pos {a : } (X : Type u_1) [PseudoMetricSpace X] {K : XX} [hK : KernelProofData a K] :
          0 < a
          theorem τ_pos {a : } (X : Type u_1) [PseudoMetricSpace X] {K : XX} [hK : KernelProofData a K] :
          theorem τ_nonneg {a : } (X : Type u_1) [PseudoMetricSpace X] {K : XX} [hK : KernelProofData a K] :
          theorem τ_le_one {a : } (X : Type u_1) [PseudoMetricSpace X] {K : XX} [hK : KernelProofData a K] :
          def nnτ {a : } (X : Type u_1) [PseudoMetricSpace X] {K : XX} [hK : KernelProofData a K] :

          τ as an element of ℝ≥0.

          Equations
          Instances For
            theorem nnτ_pos {a : } (X : Type u_1) [PseudoMetricSpace X] {K : XX} [hK : KernelProofData a K] :
            0 < nnτ X
            @[simp]
            theorem nnτ_def {a : } (X : Type u_1) [PseudoMetricSpace X] {K : XX} [hK : KernelProofData a K] :
            theorem κ_nonneg {a : } :
            theorem κ_le_one {a : } :
            @[reducible]

            Monotonicity of doubling measure metric spaces in A.

            Equations
            • One or more equations did not get rendered due to their size.
            Instances For
              Equations
              • One or more equations did not get rendered due to their size.
              instance instContinuousMapClassΘ {𝕜 : Type u_1} {X : Type u_2} [RCLike 𝕜] [PseudoMetricSpace X] [FunctionDistances 𝕜 X] :
              def toWithFunctionDistance {𝕜 : Type u_1} {X : Type u_2} [RCLike 𝕜] [PseudoMetricSpace X] {x : X} {r : } [FunctionDistances 𝕜 X] :
              Equations
              Instances For

                The ℝ≥0-valued distance function on WithFunctionDistance x r. Preferably use edist

                Equations
                • One or more equations did not get rendered due to their size.
                Instances For

                  The ball with center x and radius r in WithFunctionDistance x r.

                  Equations
                  • One or more equations did not get rendered due to their size.
                  Instances For
                    instance nonempty_Space {𝕜 : Type u_1} {X : Type u_2} {A : } [RCLike 𝕜] [PseudoMetricSpace X] [CompatibleFunctions 𝕜 X A] :
                    instance inhabited_Space {𝕜 : Type u_1} {X : Type u_2} {A : } [RCLike 𝕜] [PseudoMetricSpace X] [CompatibleFunctions 𝕜 X A] :
                    Equations
                    theorem le_localOscillation {𝕜 : Type u_1} {X : Type u_2} {A : } [RCLike 𝕜] [PseudoMetricSpace X] [CompatibleFunctions 𝕜 X A] (x : X) (r : ) (f g : Θ X) {y z : X} (hy : y Metric.ball x r) (hz : z Metric.ball x r) :
                    (coeΘ f) y - (coeΘ g) y - (coeΘ f) z + (coeΘ g) z (localOscillation (Metric.ball x r) (coeΘ f) (coeΘ g)).toReal
                    theorem oscillation_le_cdist {𝕜 : Type u_1} {X : Type u_2} {A : } [RCLike 𝕜] [PseudoMetricSpace X] [CompatibleFunctions 𝕜 X A] (x : X) (r : ) (f g : Θ X) {y z : X} (hy : y Metric.ball x r) (hz : z Metric.ball x r) :
                    (coeΘ f) y - (coeΘ g) y - (coeΘ f) z + (coeΘ g) z dist_{x, r} f g
                    theorem dist_congr {𝕜 : Type u_1} {X : Type u_2} [RCLike 𝕜] [PseudoMetricSpace X] [FunctionDistances 𝕜 X] {x₁ x₂ : X} {r₁ r₂ : } {f g : Θ X} (e₁ : x₁ = x₂) (e₂ : r₁ = r₂) :
                    dist_{x₁, r₁} f g = dist_{x₂, r₂} f g
                    def cancelPt {𝕜 : Type u_1} (X : Type u_2) {A : } [RCLike 𝕜] [PseudoMetricSpace X] [CompatibleFunctions 𝕜 X A] :
                    X

                    The point o in the blueprint

                    Equations
                    Instances For
                      theorem cancelPt_eq_zero {𝕜 : Type u_1} {X : Type u_2} {A : } [RCLike 𝕜] [PseudoMetricSpace X] [CompatibleFunctions 𝕜 X A] {f : Θ X} :
                      f (cancelPt X) = 0
                      theorem enorm_integral_exp_le {X : Type u_2} {A : } [PseudoMetricSpace X] [hXA : MeasureTheory.DoublingMeasure X A] [CompatibleFunctions X A] {τ : } [IsCancellative X τ] {x : X} {r : } {φ : X} (h2 : Function.support φ Metric.ball x r) {f g : Θ X} :
                      (x : X), Complex.exp (Complex.I * ((f x) - (g x))) * φ x‖ₑ A * MeasureTheory.volume (Metric.ball x r) * iLipENorm φ x r * (1 + edist_{x, r} f g) ^ (-τ)
                      theorem isCancellative_of_norm_integral_exp_le {X : Type u_2} {A : } [PseudoMetricSpace X] [hXA : MeasureTheory.DoublingMeasure X A] (τ : ) [CompatibleFunctions X A] (h : ∀ {x : X} {r : } {φ : X}, 0 < riLipENorm φ x r Function.support φ Metric.ball x r∀ {f g : Θ X}, (x : X) in Metric.ball x r, Complex.exp (Complex.I * ((f x) - (g x))) * φ x A * MeasureTheory.volume.real (Metric.ball x r) * (iLipNNNorm φ x r) * (1 + dist_{x, r} f g) ^ (-τ)) :

                      Constructor of IsCancellative in terms of real norms instead of extended reals.

                      The "volume function" V. We will need to assume IsFiniteMeasureOnCompacts and ProperSpace to actually know that this volume is finite.

                      Equations
                      Instances For
                        theorem le_upperRadius {X : Type u_2} [PseudoMetricSpace X] [FunctionDistances X] {Q : XΘ X} {θ : Θ X} {x : X} {r : } (hr : dist_{x, r} θ (Q x) < 1) :
                        theorem carlesonOperator_const_smul {X : Type u_2} {A : } [PseudoMetricSpace X] [hXA : MeasureTheory.DoublingMeasure X A] [FunctionDistances X] (K : XX) (f : X) (z : ) :
                        theorem carlesonOperator_const_smul' {X : Type u_2} {A : } [PseudoMetricSpace X] [hXA : MeasureTheory.DoublingMeasure X A] [FunctionDistances X] (K : XX) (f : X) (z : ) :
                        theorem C_K_pos {a : } :
                        0 < C_K a
                        theorem C_K_pos_real {a : } :
                        0 < (C_K a)
                        theorem isOneSidedKernel_const_smul {X : Type u_1} [PseudoMetricSpace X] [MeasureTheory.MeasureSpace X] {a : } {K : XX} [IsOneSidedKernel a K] {r : } (hr : |r| 1) :
                        theorem measurable_K_left {X : Type u_1} {a : } {K : XX} [PseudoMetricSpace X] [MeasureTheory.MeasureSpace X] [IsOneSidedKernel a K] (y : X) :
                        Measurable fun (x : X) => K x y
                        theorem measurable_K_right {X : Type u_1} {a : } {K : XX} [PseudoMetricSpace X] [MeasureTheory.MeasureSpace X] [IsOneSidedKernel a K] (x : X) :
                        theorem enorm_K_sub_le {X : Type u_1} {a : } {K : XX} [PseudoMetricSpace X] [MeasureTheory.MeasureSpace X] [ProperSpace X] [MeasureTheory.IsFiniteMeasureOnCompacts MeasureTheory.volume] [IsOneSidedKernel a K] {x y y' : X} (h : 2 * dist y y' dist x y) :
                        K x y - K x y'‖ₑ (edist y y' / edist x y) ^ (↑a)⁻¹ * ((C_K a) / vol x y)
                        theorem le_cdist_iterate {X : Type u_1} {a : } [PseudoMetricSpace X] [CompatibleFunctions X (defaultA a)] {x : X} {r : } (hr : 0 r) (f g : Θ X) (k : ) :
                        2 ^ k * dist_{x, r} f g dist_{x, (defaultA a) ^ k * r} f g
                        theorem cdist_le_iterate {X : Type u_1} {a : } [PseudoMetricSpace X] [CompatibleFunctions X (defaultA a)] {x : X} {r : } (hr : 0 < r) (f g : Θ X) (k : ) :
                        dist_{x, 2 ^ k * r} f g (defaultA a) ^ k * dist_{x, r} f g
                        theorem cdist_le_mul_cdist {X : Type u_1} {a : } [PseudoMetricSpace X] [CompatibleFunctions X (defaultA a)] {x x' : X} {r r' : } (hr : 0 < r) (hr' : 0 < r') (f g : Θ X) :
                        dist_{x', r'} f g (As (↑(defaultA a)) ((r' + dist x' x) / r)) * dist_{x, r} f g
                        theorem ballsCoverBalls_iterate_nat {X : Type u_1} {a : } [PseudoMetricSpace X] [CompatibleFunctions X (defaultA a)] {x : X} {d r : } {n : } :
                        theorem ballsCoverBalls_iterate {X : Type u_1} {a : } [PseudoMetricSpace X] [CompatibleFunctions X (defaultA a)] {x : X} {d R r : } (hr : 0 < r) :
                        theorem measurable_Q₂ {X : Type u_1} {a : } {K : XX} [PseudoMetricSpace X] [KernelProofData a K] {Q : MeasureTheory.SimpleFunc X (Θ X)} :
                        Measurable fun (p : X × X) => (Q p.1) p.2
                        theorem stronglyMeasurable_Q₂ {X : Type u_1} {a : } {K : XX} [PseudoMetricSpace X] [KernelProofData a K] {Q : MeasureTheory.SimpleFunc X (Θ X)} :
                        MeasureTheory.StronglyMeasurable fun (p : X × X) => (Q p.1) p.2
                        theorem aestronglyMeasurable_Q₂ {X : Type u_1} {a : } {K : XX} [PseudoMetricSpace X] [KernelProofData a K] {Q : MeasureTheory.SimpleFunc X (Θ X)} :
                        theorem measurable_Q₁ {X : Type u_1} {a : } {K : XX} [PseudoMetricSpace X] [KernelProofData a K] {Q : MeasureTheory.SimpleFunc X (Θ X)} (x : X) :
                        Measurable (Q x)