class
MeasureTheory.Measure.IsDoubling
{X : Type u_1}
[MeasurableSpace X]
[PseudoMetricSpace X]
(μ : MeasureTheory.Measure X)
(A : outParam NNReal)
:
A doubling measure is a measure on a metric space with the condition that doubling the radius of a ball only increases the volume by a constant factor, independent of the ball.
- measure_ball_two_le_same : ∀ (x : X) (r : ℝ), μ (Metric.ball x (2 * r)) ≤ ↑A * μ (Metric.ball x r)
Instances
theorem
MeasureTheory.ball_subset_ball_of_le
{X : Type u_1}
[PseudoMetricSpace X]
{x x' : X}
{r r' : ℝ}
(hr : dist x x' + r' ≤ r)
:
Metric.ball x' r' ⊆ Metric.ball x r
theorem
MeasureTheory.IsDoubling.mono
{X : Type u_1}
[PseudoMetricSpace X]
{A : NNReal}
[MeasurableSpace X]
{μ : MeasureTheory.Measure X}
[μ.IsDoubling A]
{A' : NNReal}
(h : A ≤ A')
:
μ.IsDoubling A'
theorem
MeasureTheory.measure_real_ball_two_le_same
{X : Type u_1}
[PseudoMetricSpace X]
{A : NNReal}
[MeasurableSpace X]
{μ : MeasureTheory.Measure X}
[μ.IsDoubling A]
[ProperSpace X]
[MeasureTheory.IsFiniteMeasureOnCompacts μ]
(x : X)
(r : ℝ)
:
μ.real (Metric.ball x (2 * r)) ≤ ↑A * μ.real (Metric.ball x r)
theorem
MeasureTheory.measure_real_ball_pos
{X : Type u_1}
[PseudoMetricSpace X]
[MeasurableSpace X]
{μ : MeasureTheory.Measure X}
[ProperSpace X]
[MeasureTheory.IsFiniteMeasureOnCompacts μ]
[μ.IsOpenPosMeasure]
(x : X)
{r : ℝ}
(hr : 0 < r)
:
0 < μ.real (Metric.ball x r)
theorem
MeasureTheory.one_le_A
{X : Type u_1}
[PseudoMetricSpace X]
{A : NNReal}
[MeasurableSpace X]
(μ : MeasureTheory.Measure X)
[μ.IsDoubling A]
[ProperSpace X]
[MeasureTheory.IsFiniteMeasureOnCompacts μ]
[Nonempty X]
[μ.IsOpenPosMeasure]
:
1 ≤ A
theorem
MeasureTheory.A_pos
{X : Type u_1}
[PseudoMetricSpace X]
{A : NNReal}
[MeasurableSpace X]
(μ : MeasureTheory.Measure X)
[μ.IsDoubling A]
[ProperSpace X]
[MeasureTheory.IsFiniteMeasureOnCompacts μ]
[Nonempty X]
[μ.IsOpenPosMeasure]
:
0 < A
theorem
MeasureTheory.A_pos'
{X : Type u_1}
[PseudoMetricSpace X]
{A : NNReal}
[MeasurableSpace X]
(μ : MeasureTheory.Measure X)
[μ.IsDoubling A]
[ProperSpace X]
[MeasureTheory.IsFiniteMeasureOnCompacts μ]
[Nonempty X]
[μ.IsOpenPosMeasure]
:
0 < ↑A
theorem
MeasureTheory.measure_ball_four_le_same
{X : Type u_1}
[PseudoMetricSpace X]
{A : NNReal}
[MeasurableSpace X]
{μ : MeasureTheory.Measure X}
[μ.IsDoubling A]
[ProperSpace X]
[MeasureTheory.IsFiniteMeasureOnCompacts μ]
(x : X)
(r : ℝ)
:
μ.real (Metric.ball x (4 * r)) ≤ ↑A ^ 2 * μ.real (Metric.ball x r)
theorem
MeasureTheory.measure_ball_ne_top
{X : Type u_1}
[PseudoMetricSpace X]
[MeasurableSpace X]
{μ : MeasureTheory.Measure X}
[ProperSpace X]
[MeasureTheory.IsFiniteMeasureOnCompacts μ]
(x : X)
(r : ℝ)
:
μ (Metric.ball x r) ≠ ⊤
theorem
MeasureTheory.measure_ball_four_le_same'
{X : Type u_1}
[PseudoMetricSpace X]
{A : NNReal}
[MeasurableSpace X]
{μ : MeasureTheory.Measure X}
[μ.IsDoubling A]
[ProperSpace X]
[MeasureTheory.IsFiniteMeasureOnCompacts μ]
(x : X)
(r : ℝ)
:
μ (Metric.ball x (4 * r)) ≤ ↑A ^ 2 * μ (Metric.ball x r)
theorem
MeasureTheory.measure_ball_le_pow_two
{X : Type u_1}
[PseudoMetricSpace X]
{A : NNReal}
[MeasurableSpace X]
{μ : MeasureTheory.Measure X}
[μ.IsDoubling A]
[ProperSpace X]
[MeasureTheory.IsFiniteMeasureOnCompacts μ]
{x : X}
{r : ℝ}
{n : ℕ}
:
μ.real (Metric.ball x (2 ^ n * r)) ≤ ↑A ^ n * μ.real (Metric.ball x r)
theorem
MeasureTheory.measure_ball_le_pow_two'
{X : Type u_1}
[PseudoMetricSpace X]
{A : NNReal}
[MeasurableSpace X]
{μ : MeasureTheory.Measure X}
[μ.IsDoubling A]
[ProperSpace X]
[MeasureTheory.IsFiniteMeasureOnCompacts μ]
{x : X}
{r : ℝ}
{n : ℕ}
:
μ (Metric.ball x (2 ^ n * r)) ≤ ↑A ^ n * μ (Metric.ball x r)
theorem
MeasureTheory.As_pos
{X : Type u_1}
[PseudoMetricSpace X]
{A : NNReal}
[MeasurableSpace X]
(μ : MeasureTheory.Measure X)
[μ.IsDoubling A]
[ProperSpace X]
[MeasureTheory.IsFiniteMeasureOnCompacts μ]
[Nonempty X]
[μ.IsOpenPosMeasure]
(s : ℝ)
:
0 < MeasureTheory.As A s
theorem
MeasureTheory.As_pos'
{X : Type u_1}
[PseudoMetricSpace X]
{A : NNReal}
[MeasurableSpace X]
(μ : MeasureTheory.Measure X)
[μ.IsDoubling A]
[ProperSpace X]
[MeasureTheory.IsFiniteMeasureOnCompacts μ]
[Nonempty X]
[μ.IsOpenPosMeasure]
(s : ℝ)
:
0 < ↑(MeasureTheory.As A s)
theorem
MeasureTheory.measure_ball_le_same'
{X : Type u_1}
[PseudoMetricSpace X]
{A : NNReal}
[MeasurableSpace X]
{μ : MeasureTheory.Measure X}
[μ.IsDoubling A]
[ProperSpace X]
[MeasureTheory.IsFiniteMeasureOnCompacts μ]
(x : X)
{r s r' : ℝ}
(hsp : 0 < s)
(hs : r' ≤ s * r)
:
μ (Metric.ball x r') ≤ ↑(MeasureTheory.As A s) * μ (Metric.ball x r)
theorem
MeasureTheory.measure_ball_le_same
{X : Type u_1}
[PseudoMetricSpace X]
{A : NNReal}
[MeasurableSpace X]
{μ : MeasureTheory.Measure X}
[μ.IsDoubling A]
[ProperSpace X]
[MeasureTheory.IsFiniteMeasureOnCompacts μ]
(x : X)
{r s r' : ℝ}
(hsp : 0 < s)
(hs : r' ≤ s * r)
:
μ.real (Metric.ball x r') ≤ ↑(MeasureTheory.As A s) * μ.real (Metric.ball x r)
theorem
MeasureTheory.measure_ball_le_of_dist_le'
{X : Type u_1}
[PseudoMetricSpace X]
{A : NNReal}
[MeasurableSpace X]
{μ : MeasureTheory.Measure X}
[μ.IsDoubling A]
[ProperSpace X]
[MeasureTheory.IsFiniteMeasureOnCompacts μ]
{x x' : X}
{r r' s : ℝ}
(hs : 0 < s)
(h : dist x x' + r' ≤ s * r)
:
μ (Metric.ball x' r') ≤ ↑(MeasureTheory.As A s) * μ (Metric.ball x r)
theorem
MeasureTheory.measureNNReal_ball_le_of_dist_le'
{X : Type u_1}
[PseudoMetricSpace X]
{A : NNReal}
[MeasurableSpace X]
{μ : MeasureTheory.Measure X}
[μ.IsDoubling A]
[ProperSpace X]
[MeasureTheory.IsFiniteMeasureOnCompacts μ]
{x x' : X}
{r r' s : ℝ}
(hs : 0 < s)
(h : dist x x' + r' ≤ s * r)
:
μ.nnreal (Metric.ball x' r') ≤ MeasureTheory.As A s * μ.nnreal (Metric.ball x r)
Equations
- MeasureTheory.Ai A s = MeasureTheory.As A s
Instances For
theorem
MeasureTheory.measure_ball_le_of_subset
{X : Type u_1}
[PseudoMetricSpace X]
{A : NNReal}
[MeasurableSpace X]
{μ : MeasureTheory.Measure X}
[μ.IsDoubling A]
[ProperSpace X]
[MeasureTheory.IsFiniteMeasureOnCompacts μ]
{x' x : X}
{r r' s : ℝ}
(hs : r' ≤ s * r)
(hr : Metric.ball x' r ⊆ Metric.ball x r')
:
μ.real (Metric.ball x (2 * r)) ≤ ↑(MeasureTheory.Ai A s) * μ.real (Metric.ball x' r)
Equations
Instances For
theorem
MeasureTheory.measure_ball_two_le_of_subset
{X : Type u_1}
[PseudoMetricSpace X]
{A : NNReal}
[MeasurableSpace X]
{μ : MeasureTheory.Measure X}
[μ.IsDoubling A]
[ProperSpace X]
[MeasureTheory.IsFiniteMeasureOnCompacts μ]
{x' x : X}
{r : ℝ}
(hr : Metric.ball x' r ⊆ Metric.ball x (2 * r))
:
μ.real (Metric.ball x (2 * r)) ≤ ↑(MeasureTheory.Ai2 A) * μ.real (Metric.ball x' r)
Equations
- MeasureTheory.Np A s = ⌊MeasureTheory.As A (s * ↑A + 2⁻¹)⌋₊
Instances For
theorem
MeasureTheory.card_le_of_le_dist
{X : Type u_1}
[PseudoMetricSpace X]
{A : NNReal}
[MeasurableSpace X]
[ProperSpace X]
(x : X)
{r r' s : ℝ}
(P : Set X)
(hs : r' ≤ s * r)
(hP : P ⊆ Metric.ball x r')
(h2P : ∀ (x y : X), x ∈ P → y ∈ P → x ≠ y → r ≤ dist x y)
:
P.Finite ∧ Nat.card ↑P ≤ MeasureTheory.Np A s
theorem
MeasureTheory.ballsCoverBalls
{X : Type u_1}
[PseudoMetricSpace X]
{A : NNReal}
[MeasurableSpace X]
[ProperSpace X]
{r r' s : ℝ}
(hs : r' ≤ s * r)
:
BallsCoverBalls X r' r (MeasureTheory.Np A s)
theorem
MeasureTheory.continuous_measure_ball_inter
{X : Type u_1}
[PseudoMetricSpace X]
[MeasurableSpace X]
{μ : MeasureTheory.Measure X}
[ProperSpace X]
[MeasureTheory.IsFiniteMeasureOnCompacts μ]
{U : Set X}
(hU : IsOpen U)
{δ : ℝ}
(hδ : 0 < δ)
:
Continuous fun (x : X) => μ.real (Metric.ball x δ ∩ U)
theorem
MeasureTheory.continuous_average
{X : Type u_1}
[PseudoMetricSpace X]
[MeasurableSpace X]
{μ : MeasureTheory.Measure X}
[ProperSpace X]
[MeasureTheory.IsFiniteMeasureOnCompacts μ]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
{f : X → E}
(hf : MeasureTheory.LocallyIntegrable f μ)
{δ : ℝ}
(hδ : 0 < δ)
:
Continuous fun (x : X) => ⨍ (y : X) in Metric.ball x δ, f y ∂μ
theorem
MeasureTheory.tendsto_average_zero
{X : Type u_1}
[PseudoMetricSpace X]
[MeasurableSpace X]
{μ : MeasureTheory.Measure X}
[ProperSpace X]
[MeasureTheory.IsFiniteMeasureOnCompacts μ]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
{f : X → E}
(hf : MeasureTheory.LocallyIntegrable f μ)
{x : X}
:
Filter.Tendsto (fun (δ : ℝ) => ⨍ (y : X) in Metric.ball x δ, f y ∂μ) (nhdsWithin 0 (Set.Ioi 0)) (nhds (f x))
instance
MeasureTheory.instIsUnifLocDoublingMeasure_carleson
{X : Type u_1}
{A : NNReal}
[MetricSpace X]
[MeasurableSpace X]
{μ : MeasureTheory.Measure X}
[μ.IsDoubling A]
[MeasureTheory.IsFiniteMeasureOnCompacts μ]
[ProperSpace X]
[μ.IsOpenPosMeasure]
:
Equations
- ⋯ = ⋯
theorem
MeasureTheory.Subsingleton.ball_eq
{α : Type u_1}
[PseudoMetricSpace α]
[Subsingleton α]
{x : α}
{r : ℝ}
:
Metric.ball x r = if r > 0 then {x} else ∅
instance
MeasureTheory.InnerProductSpace.IsDoubling
{E : Type u_1}
[NormedAddCommGroup E]
[InnerProductSpace ℝ E]
[MeasurableSpace E]
[BorelSpace E]
[FiniteDimensional ℝ E]
:
MeasureTheory.volume.IsDoubling (2 ^ Module.finrank ℝ E)
Equations
- ⋯ = ⋯
class
MeasureTheory.DoublingMeasure
(X : Type u_1)
(A : outParam NNReal)
[PseudoMetricSpace X]
extends MeasureTheory.MeasureSpace X, ProperSpace X, BorelSpace X, MeasureTheory.volume.Regular, MeasureTheory.volume.IsOpenPosMeasure, MeasureTheory.volume.IsDoubling A :
Type u_1
A metric space with a measure and a doubling condition.
This is called a "doubling metric measure space" in the blueprint.
A
will usually be 2 ^ a
.
This class is not Mathlib-ready code, and results moved to Mathlib should be reformulated using a (locally) doubling measure and more minimal other classes.
Note (F): we currently assume that the space is proper, which we should probably add to the
blueprint.
Remark: IsUnifLocDoublingMeasure
which is a weaker notion in Mathlib.
- MeasurableSet' : Set X → Prop
- measurableSet_empty : MeasureTheory.MeasureSpace.toMeasurableSpace.MeasurableSet' ∅
- measurableSet_compl : ∀ (s : Set X), MeasureTheory.MeasureSpace.toMeasurableSpace.MeasurableSet' s → MeasureTheory.MeasureSpace.toMeasurableSpace.MeasurableSet' sᶜ
- measurableSet_iUnion : ∀ (f : ℕ → Set X), (∀ (i : ℕ), MeasureTheory.MeasureSpace.toMeasurableSpace.MeasurableSet' (f i)) → MeasureTheory.MeasureSpace.toMeasurableSpace.MeasurableSet' (⋃ (i : ℕ), f i)
- isCompact_closedBall : ∀ (x : X) (r : ℝ), IsCompact (Metric.closedBall x r)
- measurable_eq : MeasureTheory.MeasureSpace.toMeasurableSpace = borel X
- lt_top_of_isCompact : ∀ ⦃K : Set X⦄, IsCompact K → MeasureTheory.volume K < ⊤
- outerRegular : ∀ ⦃A_1 : Set X⦄, MeasurableSet A_1 → ∀ r > MeasureTheory.volume A_1, ∃ U ⊇ A_1, IsOpen U ∧ MeasureTheory.volume U < r
- innerRegular : MeasureTheory.volume.InnerRegularWRT IsCompact IsOpen
- measure_ball_two_le_same : ∀ (x : X) (r : ℝ), MeasureTheory.volume (Metric.ball x (2 * r)) ≤ ↑A * MeasureTheory.volume (Metric.ball x r)
Instances
@[reducible]
def
MeasureTheory.DoublingMeasure.mono
{X : Type u_1}
{A : NNReal}
[PseudoMetricSpace X]
[MeasureTheory.DoublingMeasure X A]
{A' : NNReal}
(h : A ≤ A')
:
Monotonicity of doubling measure metric spaces in A
.
Equations
- MeasureTheory.DoublingMeasure.mono h = MeasureTheory.DoublingMeasure.mk
Instances For
instance
MeasureTheory.InnerProductSpace.DoublingMeasure
{E : Type u_2}
[NormedAddCommGroup E]
[InnerProductSpace ℝ E]
[MeasurableSpace E]
[BorelSpace E]
[FiniteDimensional ℝ E]
:
Equations
- MeasureTheory.InnerProductSpace.DoublingMeasure = MeasureTheory.DoublingMeasure.mk