Annulus #
In this file we define an annulus in a pseudometric space X to be a set consisting of all y
such that dist x y lies in an interval between r and R. An annulus is defined for each type
of interval (Ioo, Ioc, etc.) with a parallel naming scheme, except that we do not define annuli
for Iio and Iic, as they would be balls.
We also define EAnnulus similarly using edist instead of dist.
Upstreaming status: looks ready (once the dependent file is upstreamed); two style questions should be answered in the process (see below).
Tags #
annulus, eannulus
Annulus #
Instances For
Instances For
Instances For
Instances For
Instances For
Instances For
@[simp]
theorem
Set.Annulus.oo_eq_empty
{X : Type u_1}
[PseudoMetricSpace X]
{x : X}
{r R : ℝ}
(h : R ≤ r)
:
@[simp]
theorem
Set.Annulus.oc_eq_empty
{X : Type u_1}
[PseudoMetricSpace X]
{x : X}
{r R : ℝ}
(h : R ≤ r)
:
@[simp]
theorem
Set.Annulus.co_eq_empty
{X : Type u_1}
[PseudoMetricSpace X]
{x : X}
{r R : ℝ}
(h : R ≤ r)
:
@[simp]
theorem
Set.Annulus.cc_eq_empty
{X : Type u_1}
[PseudoMetricSpace X]
{x : X}
{r R : ℝ}
(h : R < r)
:
theorem
Set.Annulus.oo_subset_oo
{X : Type u_1}
[PseudoMetricSpace X]
{x : X}
{r₁ R₁ r₂ R₂ : ℝ}
(hr : r₂ ≤ r₁)
(hR : R₁ ≤ R₂)
:
theorem
Set.Annulus.oo_subset_oc
{X : Type u_1}
[PseudoMetricSpace X]
{x : X}
{r₁ R₁ r₂ R₂ : ℝ}
(hr : r₂ ≤ r₁)
(hR : R₁ ≤ R₂)
:
theorem
Set.Annulus.oo_subset_co
{X : Type u_1}
[PseudoMetricSpace X]
{x : X}
{r₁ R₁ r₂ R₂ : ℝ}
(hr : r₂ ≤ r₁)
(hR : R₁ ≤ R₂)
:
theorem
Set.Annulus.oo_subset_cc
{X : Type u_1}
[PseudoMetricSpace X]
{x : X}
{r₁ R₁ r₂ R₂ : ℝ}
(hr : r₂ ≤ r₁)
(hR : R₁ ≤ R₂)
:
theorem
Set.Annulus.oo_subset_oi
{X : Type u_1}
[PseudoMetricSpace X]
{x : X}
{r₁ R₁ r₂ : ℝ}
(hr : r₂ ≤ r₁)
:
theorem
Set.Annulus.oo_subset_ci
{X : Type u_1}
[PseudoMetricSpace X]
{x : X}
{r₁ R₁ r₂ : ℝ}
(hr : r₂ ≤ r₁)
:
theorem
Set.Annulus.oc_subset_oo
{X : Type u_1}
[PseudoMetricSpace X]
{x : X}
{r₁ R₁ r₂ R₂ : ℝ}
(hr : r₂ ≤ r₁)
(hR : R₁ < R₂)
:
theorem
Set.Annulus.oc_subset_oc
{X : Type u_1}
[PseudoMetricSpace X]
{x : X}
{r₁ R₁ r₂ R₂ : ℝ}
(hr : r₂ ≤ r₁)
(hR : R₁ ≤ R₂)
:
theorem
Set.Annulus.oc_subset_co
{X : Type u_1}
[PseudoMetricSpace X]
{x : X}
{r₁ R₁ r₂ R₂ : ℝ}
(hr : r₂ ≤ r₁)
(hR : R₁ < R₂)
:
theorem
Set.Annulus.oc_subset_cc
{X : Type u_1}
[PseudoMetricSpace X]
{x : X}
{r₁ R₁ r₂ R₂ : ℝ}
(hr : r₂ ≤ r₁)
(hR : R₁ ≤ R₂)
:
theorem
Set.Annulus.oc_subset_oi
{X : Type u_1}
[PseudoMetricSpace X]
{x : X}
{r₁ R₁ r₂ : ℝ}
(hr : r₂ ≤ r₁)
:
theorem
Set.Annulus.oc_subset_ci
{X : Type u_1}
[PseudoMetricSpace X]
{x : X}
{r₁ R₁ r₂ : ℝ}
(hr : r₂ ≤ r₁)
:
theorem
Set.Annulus.co_subset_oo
{X : Type u_1}
[PseudoMetricSpace X]
{x : X}
{r₁ R₁ r₂ R₂ : ℝ}
(hr : r₂ < r₁)
(hR : R₁ ≤ R₂)
:
theorem
Set.Annulus.co_subset_oc
{X : Type u_1}
[PseudoMetricSpace X]
{x : X}
{r₁ R₁ r₂ R₂ : ℝ}
(hr : r₂ < r₁)
(hR : R₁ ≤ R₂)
:
theorem
Set.Annulus.co_subset_co
{X : Type u_1}
[PseudoMetricSpace X]
{x : X}
{r₁ R₁ r₂ R₂ : ℝ}
(hr : r₂ ≤ r₁)
(hR : R₁ ≤ R₂)
:
theorem
Set.Annulus.co_subset_cc
{X : Type u_1}
[PseudoMetricSpace X]
{x : X}
{r₁ R₁ r₂ R₂ : ℝ}
(hr : r₂ ≤ r₁)
(hR : R₁ ≤ R₂)
:
theorem
Set.Annulus.co_subset_oi
{X : Type u_1}
[PseudoMetricSpace X]
{x : X}
{r₁ R₁ r₂ : ℝ}
(hr : r₂ < r₁)
:
theorem
Set.Annulus.co_subset_ci
{X : Type u_1}
[PseudoMetricSpace X]
{x : X}
{r₁ R₁ r₂ : ℝ}
(hr : r₂ ≤ r₁)
:
theorem
Set.Annulus.cc_subset_oo
{X : Type u_1}
[PseudoMetricSpace X]
{x : X}
{r₁ R₁ r₂ R₂ : ℝ}
(hr : r₂ < r₁)
(hR : R₁ < R₂)
:
theorem
Set.Annulus.cc_subset_oc
{X : Type u_1}
[PseudoMetricSpace X]
{x : X}
{r₁ R₁ r₂ R₂ : ℝ}
(hr : r₂ < r₁)
(hR : R₁ ≤ R₂)
:
theorem
Set.Annulus.cc_subset_co
{X : Type u_1}
[PseudoMetricSpace X]
{x : X}
{r₁ R₁ r₂ R₂ : ℝ}
(hr : r₂ ≤ r₁)
(hR : R₁ < R₂)
:
theorem
Set.Annulus.cc_subset_cc
{X : Type u_1}
[PseudoMetricSpace X]
{x : X}
{r₁ R₁ r₂ R₂ : ℝ}
(hr : r₂ ≤ r₁)
(hR : R₁ ≤ R₂)
:
theorem
Set.Annulus.cc_subset_oi
{X : Type u_1}
[PseudoMetricSpace X]
{x : X}
{r₁ R₁ r₂ : ℝ}
(hr : r₂ < r₁)
:
theorem
Set.Annulus.cc_subset_ci
{X : Type u_1}
[PseudoMetricSpace X]
{x : X}
{r₁ R₁ r₂ : ℝ}
(hr : r₂ ≤ r₁)
:
theorem
Set.Annulus.pairwise_disjoint_co_monotone
{X : Type u_1}
[PseudoMetricSpace X]
{ι : Type u_2}
[LinearOrder ι]
[SuccOrder ι]
{x : X}
{f : ι → ℝ}
(hf : Monotone f)
:
Pairwise (Function.onFun Disjoint fun (i : ι) => co x (f i) (f (Order.succ i)))
theorem
Set.Annulus.pairwise_disjoint_oc_monotone
{X : Type u_1}
[PseudoMetricSpace X]
{ι : Type u_2}
[LinearOrder ι]
[SuccOrder ι]
{x : X}
{f : ι → ℝ}
(hf : Monotone f)
:
Pairwise (Function.onFun Disjoint fun (i : ι) => oc x (f i) (f (Order.succ i)))
theorem
Set.Annulus.measurableSet_oo
{X : Type u_1}
[PseudoMetricSpace X]
[MeasurableSpace X]
[OpensMeasurableSpace X]
{x : X}
{r R : ℝ}
:
MeasurableSet (oo x r R)
theorem
Set.Annulus.measurableSet_oc
{X : Type u_1}
[PseudoMetricSpace X]
[MeasurableSpace X]
[OpensMeasurableSpace X]
{x : X}
{r R : ℝ}
:
MeasurableSet (oc x r R)
theorem
Set.Annulus.measurableSet_co
{X : Type u_1}
[PseudoMetricSpace X]
[MeasurableSpace X]
[OpensMeasurableSpace X]
{x : X}
{r R : ℝ}
:
MeasurableSet (co x r R)
theorem
Set.Annulus.measurableSet_cc
{X : Type u_1}
[PseudoMetricSpace X]
[MeasurableSpace X]
[OpensMeasurableSpace X]
{x : X}
{r R : ℝ}
:
MeasurableSet (cc x r R)
theorem
Set.Annulus.measurableSet_oi
{X : Type u_1}
[PseudoMetricSpace X]
[MeasurableSpace X]
[OpensMeasurableSpace X]
{x : X}
{r : ℝ}
:
MeasurableSet (oi x r)
theorem
Set.Annulus.measurableSet_ci
{X : Type u_1}
[PseudoMetricSpace X]
[MeasurableSpace X]
[OpensMeasurableSpace X]
{x : X}
{r : ℝ}
:
MeasurableSet (ci x r)
EAnnulus #
Instances For
Instances For
Instances For
Instances For
Instances For
Instances For
theorem
Set.EAnnulus.oo_eq_annulus
{X : Type u_1}
[PseudoMetricSpace X]
{x : X}
{r R : ℝ}
(hr : 0 ≤ r)
:
theorem
Set.EAnnulus.oc_eq_annulus
{X : Type u_1}
[PseudoMetricSpace X]
{x : X}
{r R : ℝ}
(hr : 0 ≤ r)
:
theorem
Set.EAnnulus.cc_eq_annulus
{X : Type u_1}
[PseudoMetricSpace X]
{x : X}
{r R : ℝ}
(h : 0 < r ∨ 0 ≤ R)
:
theorem
Set.EAnnulus.oi_eq_annulus
{X : Type u_1}
[PseudoMetricSpace X]
{x : X}
{r : ℝ}
(hr : 0 ≤ r)
:
theorem
Set.EAnnulus.oo_eq_of_lt_top
{X : Type u_1}
[PseudoMetricSpace X]
{x : X}
{r R : ENNReal}
(hr : r < ⊤)
(hR : R < ⊤)
:
theorem
Set.EAnnulus.oc_eq_of_lt_top
{X : Type u_1}
[PseudoMetricSpace X]
{x : X}
{r R : ENNReal}
(hr : r < ⊤)
(hR : R < ⊤)
:
theorem
Set.EAnnulus.co_eq_of_lt_top
{X : Type u_1}
[PseudoMetricSpace X]
{x : X}
{r R : ENNReal}
(hr : r < ⊤)
(hR : R < ⊤)
:
theorem
Set.EAnnulus.cc_eq_of_lt_top
{X : Type u_1}
[PseudoMetricSpace X]
{x : X}
{r R : ENNReal}
(hr : r < ⊤)
(hR : R < ⊤)
:
theorem
Set.EAnnulus.oi_eq_of_lt_top
{X : Type u_1}
[PseudoMetricSpace X]
{x : X}
{r : ENNReal}
(hr : r < ⊤)
:
theorem
Set.EAnnulus.ci_eq_of_lt_top
{X : Type u_1}
[PseudoMetricSpace X]
{x : X}
{r : ENNReal}
(hr : r < ⊤)
:
@[simp]
theorem
Set.EAnnulus.oo_eq_empty
{X : Type u_1}
[PseudoMetricSpace X]
{x : X}
{r R : ENNReal}
(h : R ≤ r)
:
@[simp]
theorem
Set.EAnnulus.oc_eq_empty
{X : Type u_1}
[PseudoMetricSpace X]
{x : X}
{r R : ENNReal}
(h : R ≤ r)
:
@[simp]
theorem
Set.EAnnulus.co_eq_empty
{X : Type u_1}
[PseudoMetricSpace X]
{x : X}
{r R : ENNReal}
(h : R ≤ r)
:
@[simp]
theorem
Set.EAnnulus.cc_eq_empty
{X : Type u_1}
[PseudoMetricSpace X]
{x : X}
{r R : ENNReal}
(h : R < r)
:
@[simp]
@[simp]
@[simp]
theorem
Set.EAnnulus.oo_eq_of_top
{X : Type u_1}
[PseudoMetricSpace X]
{x : X}
{r : ENNReal}
(hr : r < ⊤)
:
theorem
Set.EAnnulus.oc_eq_of_top
{X : Type u_1}
[PseudoMetricSpace X]
{x : X}
{r : ENNReal}
(hr : r < ⊤)
:
theorem
Set.EAnnulus.co_eq_of_top
{X : Type u_1}
[PseudoMetricSpace X]
{x : X}
{r : ENNReal}
(hr : r < ⊤)
:
theorem
Set.EAnnulus.cc_eq_of_top
{X : Type u_1}
[PseudoMetricSpace X]
{x : X}
{r : ENNReal}
(hr : r < ⊤)
:
theorem
Set.EAnnulus.oo_subset_oo
{X : Type u_1}
[PseudoMetricSpace X]
{x : X}
{r₁ R₁ r₂ R₂ : ENNReal}
(hr : r₂ ≤ r₁)
(hR : R₁ ≤ R₂)
:
theorem
Set.EAnnulus.oo_subset_oc
{X : Type u_1}
[PseudoMetricSpace X]
{x : X}
{r₁ R₁ r₂ R₂ : ENNReal}
(hr : r₂ ≤ r₁)
(hR : R₁ ≤ R₂)
:
theorem
Set.EAnnulus.oo_subset_co
{X : Type u_1}
[PseudoMetricSpace X]
{x : X}
{r₁ R₁ r₂ R₂ : ENNReal}
(hr : r₂ ≤ r₁)
(hR : R₁ ≤ R₂)
:
theorem
Set.EAnnulus.oo_subset_cc
{X : Type u_1}
[PseudoMetricSpace X]
{x : X}
{r₁ R₁ r₂ R₂ : ENNReal}
(hr : r₂ ≤ r₁)
(hR : R₁ ≤ R₂)
:
theorem
Set.EAnnulus.oo_subset_oi
{X : Type u_1}
[PseudoMetricSpace X]
{x : X}
{r₁ R₁ r₂ : ENNReal}
(hr : r₂ ≤ r₁)
:
theorem
Set.EAnnulus.oo_subset_ci
{X : Type u_1}
[PseudoMetricSpace X]
{x : X}
{r₁ R₁ r₂ : ENNReal}
(hr : r₂ ≤ r₁)
:
theorem
Set.EAnnulus.oc_subset_oo
{X : Type u_1}
[PseudoMetricSpace X]
{x : X}
{r₁ R₁ r₂ R₂ : ENNReal}
(hr : r₂ ≤ r₁)
(hR : R₁ < R₂)
:
theorem
Set.EAnnulus.oc_subset_oc
{X : Type u_1}
[PseudoMetricSpace X]
{x : X}
{r₁ R₁ r₂ R₂ : ENNReal}
(hr : r₂ ≤ r₁)
(hR : R₁ ≤ R₂)
:
theorem
Set.EAnnulus.oc_subset_co
{X : Type u_1}
[PseudoMetricSpace X]
{x : X}
{r₁ R₁ r₂ R₂ : ENNReal}
(hr : r₂ ≤ r₁)
(hR : R₁ < R₂)
:
theorem
Set.EAnnulus.oc_subset_cc
{X : Type u_1}
[PseudoMetricSpace X]
{x : X}
{r₁ R₁ r₂ R₂ : ENNReal}
(hr : r₂ ≤ r₁)
(hR : R₁ ≤ R₂)
:
theorem
Set.EAnnulus.oc_subset_oi
{X : Type u_1}
[PseudoMetricSpace X]
{x : X}
{r₁ R₁ r₂ : ENNReal}
(hr : r₂ ≤ r₁)
:
theorem
Set.EAnnulus.oc_subset_ci
{X : Type u_1}
[PseudoMetricSpace X]
{x : X}
{r₁ R₁ r₂ : ENNReal}
(hr : r₂ ≤ r₁)
:
theorem
Set.EAnnulus.co_subset_oo
{X : Type u_1}
[PseudoMetricSpace X]
{x : X}
{r₁ R₁ r₂ R₂ : ENNReal}
(hr : r₂ < r₁)
(hR : R₁ ≤ R₂)
:
theorem
Set.EAnnulus.co_subset_oc
{X : Type u_1}
[PseudoMetricSpace X]
{x : X}
{r₁ R₁ r₂ R₂ : ENNReal}
(hr : r₂ < r₁)
(hR : R₁ ≤ R₂)
:
theorem
Set.EAnnulus.co_subset_co
{X : Type u_1}
[PseudoMetricSpace X]
{x : X}
{r₁ R₁ r₂ R₂ : ENNReal}
(hr : r₂ ≤ r₁)
(hR : R₁ ≤ R₂)
:
theorem
Set.EAnnulus.co_subset_cc
{X : Type u_1}
[PseudoMetricSpace X]
{x : X}
{r₁ R₁ r₂ R₂ : ENNReal}
(hr : r₂ ≤ r₁)
(hR : R₁ ≤ R₂)
:
theorem
Set.EAnnulus.co_subset_oi
{X : Type u_1}
[PseudoMetricSpace X]
{x : X}
{r₁ R₁ r₂ : ENNReal}
(hr : r₂ < r₁)
:
theorem
Set.EAnnulus.co_subset_ci
{X : Type u_1}
[PseudoMetricSpace X]
{x : X}
{r₁ R₁ r₂ : ENNReal}
(hr : r₂ ≤ r₁)
:
theorem
Set.EAnnulus.cc_subset_oo
{X : Type u_1}
[PseudoMetricSpace X]
{x : X}
{r₁ R₁ r₂ R₂ : ENNReal}
(hr : r₂ < r₁)
(hR : R₁ < R₂)
:
theorem
Set.EAnnulus.cc_subset_oc
{X : Type u_1}
[PseudoMetricSpace X]
{x : X}
{r₁ R₁ r₂ R₂ : ENNReal}
(hr : r₂ < r₁)
(hR : R₁ ≤ R₂)
:
theorem
Set.EAnnulus.cc_subset_co
{X : Type u_1}
[PseudoMetricSpace X]
{x : X}
{r₁ R₁ r₂ R₂ : ENNReal}
(hr : r₂ ≤ r₁)
(hR : R₁ < R₂)
:
theorem
Set.EAnnulus.cc_subset_cc
{X : Type u_1}
[PseudoMetricSpace X]
{x : X}
{r₁ R₁ r₂ R₂ : ENNReal}
(hr : r₂ ≤ r₁)
(hR : R₁ ≤ R₂)
:
theorem
Set.EAnnulus.cc_subset_oi
{X : Type u_1}
[PseudoMetricSpace X]
{x : X}
{r₁ R₁ r₂ : ENNReal}
(hr : r₂ < r₁)
:
theorem
Set.EAnnulus.cc_subset_ci
{X : Type u_1}
[PseudoMetricSpace X]
{x : X}
{r₁ R₁ r₂ : ENNReal}
(hr : r₂ ≤ r₁)
:
theorem
Set.EAnnulus.measurableSet_oo
{X : Type u_1}
[PseudoMetricSpace X]
[MeasurableSpace X]
[OpensMeasurableSpace X]
{x : X}
{r R : ENNReal}
:
MeasurableSet (oo x r R)
theorem
Set.EAnnulus.measurableSet_oc
{X : Type u_1}
[PseudoMetricSpace X]
[MeasurableSpace X]
[OpensMeasurableSpace X]
{x : X}
{r R : ENNReal}
:
MeasurableSet (oc x r R)
theorem
Set.EAnnulus.measurableSet_co
{X : Type u_1}
[PseudoMetricSpace X]
[MeasurableSpace X]
[OpensMeasurableSpace X]
{x : X}
{r R : ENNReal}
:
MeasurableSet (co x r R)
theorem
Set.EAnnulus.measurableSet_cc
{X : Type u_1}
[PseudoMetricSpace X]
[MeasurableSpace X]
[OpensMeasurableSpace X]
{x : X}
{r R : ENNReal}
:
MeasurableSet (cc x r R)
theorem
Set.EAnnulus.measurableSet_oi
{X : Type u_1}
[PseudoMetricSpace X]
[MeasurableSpace X]
[OpensMeasurableSpace X]
{x : X}
{r : ENNReal}
:
MeasurableSet (oi x r)
theorem
Set.EAnnulus.measurableSet_ci
{X : Type u_1}
[PseudoMetricSpace X]
[MeasurableSpace X]
[OpensMeasurableSpace X]
{x : X}
{r : ENNReal}
:
MeasurableSet (ci x r)