Documentation

Carleson.ToMathlib.Annulus

Annulus #

In this file we define an annulus in a pseudometric space X to be a set consisting of all y such that dist x y lies in an interval between r and R. An annulus is defined for each type of interval (Ioo, Ioc, etc.) with a parallel naming scheme, except that we do not define annuli for Iio and Iic, as they would be balls.

We also define EAnnulus similarly using edist instead of dist.

Upstreaming status: looks ready (once the dependent file is upstreamed); two style questions should be answered in the process (see below).

Tags #

annulus, eannulus

Annulus #

def Set.Annulus.oo {X : Type u_1} [PseudoMetricSpace X] (x : X) (r R : ) :
Set X
Equations
Instances For
    def Set.Annulus.oc {X : Type u_1} [PseudoMetricSpace X] (x : X) (r R : ) :
    Set X
    Equations
    Instances For
      def Set.Annulus.co {X : Type u_1} [PseudoMetricSpace X] (x : X) (r R : ) :
      Set X
      Equations
      Instances For
        def Set.Annulus.cc {X : Type u_1} [PseudoMetricSpace X] (x : X) (r R : ) :
        Set X
        Equations
        Instances For
          def Set.Annulus.oi {X : Type u_1} [PseudoMetricSpace X] (x : X) (r : ) :
          Set X
          Equations
          Instances For
            def Set.Annulus.ci {X : Type u_1} [PseudoMetricSpace X] (x : X) (r : ) :
            Set X
            Equations
            Instances For
              theorem Set.Annulus.oo_eq {X : Type u_1} [PseudoMetricSpace X] {x : X} {r R : } :
              theorem Set.Annulus.oc_eq {X : Type u_1} [PseudoMetricSpace X] {x : X} {r R : } :
              theorem Set.Annulus.co_eq {X : Type u_1} [PseudoMetricSpace X] {x : X} {r R : } :
              theorem Set.Annulus.cc_eq {X : Type u_1} [PseudoMetricSpace X] {x : X} {r R : } :
              theorem Set.Annulus.oi_eq {X : Type u_1} [PseudoMetricSpace X] {x : X} {r : } :
              theorem Set.Annulus.ci_eq {X : Type u_1} [PseudoMetricSpace X] {x : X} {r : } :
              ci x r = (Metric.ball x r)
              @[simp]
              theorem Set.Annulus.oo_eq_empty {X : Type u_1} [PseudoMetricSpace X] {x : X} {r R : } (h : R r) :
              oo x r R =
              @[simp]
              theorem Set.Annulus.oc_eq_empty {X : Type u_1} [PseudoMetricSpace X] {x : X} {r R : } (h : R r) :
              oc x r R =
              @[simp]
              theorem Set.Annulus.co_eq_empty {X : Type u_1} [PseudoMetricSpace X] {x : X} {r R : } (h : R r) :
              co x r R =
              @[simp]
              theorem Set.Annulus.cc_eq_empty {X : Type u_1} [PseudoMetricSpace X] {x : X} {r R : } (h : R < r) :
              cc x r R =
              theorem Set.Annulus.oo_subset_oo {X : Type u_1} [PseudoMetricSpace X] {x : X} {r₁ R₁ r₂ R₂ : } (hr : r₂ r₁) (hR : R₁ R₂) :
              oo x r₁ R₁ oo x r₂ R₂
              theorem Set.Annulus.oo_subset_oc {X : Type u_1} [PseudoMetricSpace X] {x : X} {r₁ R₁ r₂ R₂ : } (hr : r₂ r₁) (hR : R₁ R₂) :
              oo x r₁ R₁ oc x r₂ R₂
              theorem Set.Annulus.oo_subset_co {X : Type u_1} [PseudoMetricSpace X] {x : X} {r₁ R₁ r₂ R₂ : } (hr : r₂ r₁) (hR : R₁ R₂) :
              oo x r₁ R₁ co x r₂ R₂
              theorem Set.Annulus.oo_subset_cc {X : Type u_1} [PseudoMetricSpace X] {x : X} {r₁ R₁ r₂ R₂ : } (hr : r₂ r₁) (hR : R₁ R₂) :
              oo x r₁ R₁ cc x r₂ R₂
              theorem Set.Annulus.oo_subset_oi {X : Type u_1} [PseudoMetricSpace X] {x : X} {r₁ R₁ r₂ : } (hr : r₂ r₁) :
              oo x r₁ R₁ oi x r₂
              theorem Set.Annulus.oo_subset_ci {X : Type u_1} [PseudoMetricSpace X] {x : X} {r₁ R₁ r₂ : } (hr : r₂ r₁) :
              oo x r₁ R₁ ci x r₂
              theorem Set.Annulus.oc_subset_oo {X : Type u_1} [PseudoMetricSpace X] {x : X} {r₁ R₁ r₂ R₂ : } (hr : r₂ r₁) (hR : R₁ < R₂) :
              oc x r₁ R₁ oo x r₂ R₂
              theorem Set.Annulus.oc_subset_oc {X : Type u_1} [PseudoMetricSpace X] {x : X} {r₁ R₁ r₂ R₂ : } (hr : r₂ r₁) (hR : R₁ R₂) :
              oc x r₁ R₁ oc x r₂ R₂
              theorem Set.Annulus.oc_subset_co {X : Type u_1} [PseudoMetricSpace X] {x : X} {r₁ R₁ r₂ R₂ : } (hr : r₂ r₁) (hR : R₁ < R₂) :
              oc x r₁ R₁ co x r₂ R₂
              theorem Set.Annulus.oc_subset_cc {X : Type u_1} [PseudoMetricSpace X] {x : X} {r₁ R₁ r₂ R₂ : } (hr : r₂ r₁) (hR : R₁ R₂) :
              oc x r₁ R₁ cc x r₂ R₂
              theorem Set.Annulus.oc_subset_oi {X : Type u_1} [PseudoMetricSpace X] {x : X} {r₁ R₁ r₂ : } (hr : r₂ r₁) :
              oo x r₁ R₁ oi x r₂
              theorem Set.Annulus.oc_subset_ci {X : Type u_1} [PseudoMetricSpace X] {x : X} {r₁ R₁ r₂ : } (hr : r₂ r₁) :
              oc x r₁ R₁ ci x r₂
              theorem Set.Annulus.co_subset_oo {X : Type u_1} [PseudoMetricSpace X] {x : X} {r₁ R₁ r₂ R₂ : } (hr : r₂ < r₁) (hR : R₁ R₂) :
              co x r₁ R₁ oo x r₂ R₂
              theorem Set.Annulus.co_subset_oc {X : Type u_1} [PseudoMetricSpace X] {x : X} {r₁ R₁ r₂ R₂ : } (hr : r₂ < r₁) (hR : R₁ R₂) :
              co x r₁ R₁ oc x r₂ R₂
              theorem Set.Annulus.co_subset_co {X : Type u_1} [PseudoMetricSpace X] {x : X} {r₁ R₁ r₂ R₂ : } (hr : r₂ r₁) (hR : R₁ R₂) :
              co x r₁ R₁ co x r₂ R₂
              theorem Set.Annulus.co_subset_cc {X : Type u_1} [PseudoMetricSpace X] {x : X} {r₁ R₁ r₂ R₂ : } (hr : r₂ r₁) (hR : R₁ R₂) :
              co x r₁ R₁ cc x r₂ R₂
              theorem Set.Annulus.co_subset_oi {X : Type u_1} [PseudoMetricSpace X] {x : X} {r₁ R₁ r₂ : } (hr : r₂ < r₁) :
              co x r₁ R₁ oi x r₂
              theorem Set.Annulus.co_subset_ci {X : Type u_1} [PseudoMetricSpace X] {x : X} {r₁ R₁ r₂ : } (hr : r₂ r₁) :
              co x r₁ R₁ ci x r₂
              theorem Set.Annulus.cc_subset_oo {X : Type u_1} [PseudoMetricSpace X] {x : X} {r₁ R₁ r₂ R₂ : } (hr : r₂ < r₁) (hR : R₁ < R₂) :
              cc x r₁ R₁ oo x r₂ R₂
              theorem Set.Annulus.cc_subset_oc {X : Type u_1} [PseudoMetricSpace X] {x : X} {r₁ R₁ r₂ R₂ : } (hr : r₂ < r₁) (hR : R₁ R₂) :
              cc x r₁ R₁ oc x r₂ R₂
              theorem Set.Annulus.cc_subset_co {X : Type u_1} [PseudoMetricSpace X] {x : X} {r₁ R₁ r₂ R₂ : } (hr : r₂ r₁) (hR : R₁ < R₂) :
              cc x r₁ R₁ co x r₂ R₂
              theorem Set.Annulus.cc_subset_cc {X : Type u_1} [PseudoMetricSpace X] {x : X} {r₁ R₁ r₂ R₂ : } (hr : r₂ r₁) (hR : R₁ R₂) :
              cc x r₁ R₁ cc x r₂ R₂
              theorem Set.Annulus.cc_subset_oi {X : Type u_1} [PseudoMetricSpace X] {x : X} {r₁ R₁ r₂ : } (hr : r₂ < r₁) :
              cc x r₁ R₁ oi x r₂
              theorem Set.Annulus.cc_subset_ci {X : Type u_1} [PseudoMetricSpace X] {x : X} {r₁ R₁ r₂ : } (hr : r₂ r₁) :
              cc x r₁ R₁ ci x r₂
              theorem Set.Annulus.oo_subset_ball {X : Type u_1} [PseudoMetricSpace X] {x : X} {r R : } :
              oo x r R Metric.ball x R
              theorem Set.Annulus.co_subset_ball {X : Type u_1} [PseudoMetricSpace X] {x : X} {r R : } :
              co x r R Metric.ball x R
              @[simp]
              theorem Set.Annulus.oc_union_oo {X : Type u_1} [PseudoMetricSpace X] {x : X} {r r' R : } (h₁ : r r') (h₂ : r' < R) :
              oc x r r' oo x r' R = oo x r R
              @[simp]
              theorem Set.Annulus.oc_union_oc {X : Type u_1} [PseudoMetricSpace X] {x : X} {r r' R : } (h₁ : r r') (h₂ : r' R) :
              oc x r r' oc x r' R = oc x r R
              @[simp]
              theorem Set.Annulus.oo_union_co {X : Type u_1} [PseudoMetricSpace X] {x : X} {r r' R : } (h₁ : r < r') (h₂ : r' R) :
              oo x r r' co x r' R = oo x r R
              @[simp]
              theorem Set.Annulus.oo_union_cc {X : Type u_1} [PseudoMetricSpace X] {x : X} {r r' R : } (h₁ : r < r') (h₂ : r' R) :
              oo x r r' cc x r' R = oc x r R
              @[simp]
              theorem Set.Annulus.cc_union_oo {X : Type u_1} [PseudoMetricSpace X] {x : X} {r r' R : } (h₁ : r r') (h₂ : r' < R) :
              cc x r r' oo x r' R = co x r R
              @[simp]
              theorem Set.Annulus.cc_union_oc {X : Type u_1} [PseudoMetricSpace X] {x : X} {r r' R : } (h₁ : r r') (h₂ : r' R) :
              cc x r r' oc x r' R = cc x r R
              @[simp]
              theorem Set.Annulus.co_union_co {X : Type u_1} [PseudoMetricSpace X] {x : X} {r r' R : } (h₁ : r r') (h₂ : r' R) :
              co x r r' co x r' R = co x r R
              @[simp]
              theorem Set.Annulus.co_union_cc {X : Type u_1} [PseudoMetricSpace X] {x : X} {r r' R : } (h₁ : r r') (h₂ : r' R) :
              co x r r' cc x r' R = cc x r R
              @[simp]
              theorem Set.Annulus.oc_union_oi {X : Type u_1} [PseudoMetricSpace X] {x : X} {r R : } (h : r R) :
              oc x r R oi x R = oi x r
              @[simp]
              theorem Set.Annulus.oo_union_ci {X : Type u_1} [PseudoMetricSpace X] {x : X} {r R : } (h : r < R) :
              oo x r R ci x R = oi x r
              @[simp]
              theorem Set.Annulus.cc_union_oi {X : Type u_1} [PseudoMetricSpace X] {x : X} {r R : } (h : r R) :
              cc x r R oi x R = ci x r
              @[simp]
              theorem Set.Annulus.co_union_ci {X : Type u_1} [PseudoMetricSpace X] {x : X} {r R : } (h : r R) :
              co x r R ci x R = ci x r
              theorem Set.Annulus.iUnion_co_eq_ci {X : Type u_1} [PseudoMetricSpace X] {x : X} {f : } (hf : ∀ (n : ), f 0 f n) (h2f : ¬BddAbove (range f)) :
              ⋃ (i : ), co x (f i) (f (i + 1)) = ci x (f 0)
              theorem Set.Annulus.iUnion_oc_eq_oi {X : Type u_1} [PseudoMetricSpace X] {x : X} {f : } (hf : ∀ (n : ), f 0 f n) (h2f : ¬BddAbove (range f)) :
              ⋃ (i : ), oc x (f i) (f (i + 1)) = oi x (f 0)
              theorem Set.Annulus.pairwise_disjoint_co_monotone {X : Type u_1} [PseudoMetricSpace X] {ι : Type u_2} [LinearOrder ι] [SuccOrder ι] {x : X} {f : ι} (hf : Monotone f) :
              Pairwise (Function.onFun Disjoint fun (i : ι) => co x (f i) (f (Order.succ i)))
              theorem Set.Annulus.pairwise_disjoint_oc_monotone {X : Type u_1} [PseudoMetricSpace X] {ι : Type u_2} [LinearOrder ι] [SuccOrder ι] {x : X} {f : ι} (hf : Monotone f) :
              Pairwise (Function.onFun Disjoint fun (i : ι) => oc x (f i) (f (Order.succ i)))

              EAnnulus #

              def Set.EAnnulus.oo {X : Type u_1} [PseudoMetricSpace X] (x : X) (r R : ENNReal) :
              Set X
              Equations
              Instances For
                def Set.EAnnulus.oc {X : Type u_1} [PseudoMetricSpace X] (x : X) (r R : ENNReal) :
                Set X
                Equations
                Instances For
                  def Set.EAnnulus.co {X : Type u_1} [PseudoMetricSpace X] (x : X) (r R : ENNReal) :
                  Set X
                  Equations
                  Instances For
                    def Set.EAnnulus.cc {X : Type u_1} [PseudoMetricSpace X] (x : X) (r R : ENNReal) :
                    Set X
                    Equations
                    Instances For
                      def Set.EAnnulus.oi {X : Type u_1} [PseudoMetricSpace X] (x : X) (r : ENNReal) :
                      Set X
                      Equations
                      Instances For
                        def Set.EAnnulus.ci {X : Type u_1} [PseudoMetricSpace X] (x : X) (r : ENNReal) :
                        Set X
                        Equations
                        Instances For
                          theorem Set.EAnnulus.oo_eq_annulus {X : Type u_1} [PseudoMetricSpace X] {x : X} {r R : } (hr : 0 r) :
                          theorem Set.EAnnulus.oc_eq_annulus {X : Type u_1} [PseudoMetricSpace X] {x : X} {r R : } (hr : 0 r) :
                          theorem Set.EAnnulus.cc_eq_annulus {X : Type u_1} [PseudoMetricSpace X] {x : X} {r R : } (h : 0 < r 0 R) :
                          theorem Set.EAnnulus.oi_eq_annulus {X : Type u_1} [PseudoMetricSpace X] {x : X} {r : } (hr : 0 r) :
                          theorem Set.EAnnulus.oo_eq_of_lt_top {X : Type u_1} [PseudoMetricSpace X] {x : X} {r R : ENNReal} (hr : r < ) (hR : R < ) :
                          theorem Set.EAnnulus.oc_eq_of_lt_top {X : Type u_1} [PseudoMetricSpace X] {x : X} {r R : ENNReal} (hr : r < ) (hR : R < ) :
                          theorem Set.EAnnulus.co_eq_of_lt_top {X : Type u_1} [PseudoMetricSpace X] {x : X} {r R : ENNReal} (hr : r < ) (hR : R < ) :
                          theorem Set.EAnnulus.cc_eq_of_lt_top {X : Type u_1} [PseudoMetricSpace X] {x : X} {r R : ENNReal} (hr : r < ) (hR : R < ) :
                          theorem Set.EAnnulus.oi_eq_of_lt_top {X : Type u_1} [PseudoMetricSpace X] {x : X} {r : ENNReal} (hr : r < ) :
                          theorem Set.EAnnulus.ci_eq_of_lt_top {X : Type u_1} [PseudoMetricSpace X] {x : X} {r : ENNReal} (hr : r < ) :
                          @[simp]
                          theorem Set.EAnnulus.oo_eq_empty {X : Type u_1} [PseudoMetricSpace X] {x : X} {r R : ENNReal} (h : R r) :
                          oo x r R =
                          @[simp]
                          theorem Set.EAnnulus.oc_eq_empty {X : Type u_1} [PseudoMetricSpace X] {x : X} {r R : ENNReal} (h : R r) :
                          oc x r R =
                          @[simp]
                          theorem Set.EAnnulus.co_eq_empty {X : Type u_1} [PseudoMetricSpace X] {x : X} {r R : ENNReal} (h : R r) :
                          co x r R =
                          @[simp]
                          theorem Set.EAnnulus.cc_eq_empty {X : Type u_1} [PseudoMetricSpace X] {x : X} {r R : ENNReal} (h : R < r) :
                          cc x r R =
                          @[simp]
                          theorem Set.EAnnulus.cc_top_eq_empty {X : Type u_1} [PseudoMetricSpace X] {x : X} {R : ENNReal} :
                          cc x R =
                          @[simp]
                          theorem Set.EAnnulus.oi_eq_empty {X : Type u_1} [PseudoMetricSpace X] {x : X} :
                          @[simp]
                          theorem Set.EAnnulus.ci_eq_empty {X : Type u_1} [PseudoMetricSpace X] {x : X} :
                          theorem Set.EAnnulus.oo_eq_of_top {X : Type u_1} [PseudoMetricSpace X] {x : X} {r : ENNReal} (hr : r < ) :
                          theorem Set.EAnnulus.oc_eq_of_top {X : Type u_1} [PseudoMetricSpace X] {x : X} {r : ENNReal} (hr : r < ) :
                          theorem Set.EAnnulus.co_eq_of_top {X : Type u_1} [PseudoMetricSpace X] {x : X} {r : ENNReal} (hr : r < ) :
                          theorem Set.EAnnulus.cc_eq_of_top {X : Type u_1} [PseudoMetricSpace X] {x : X} {r : ENNReal} (hr : r < ) :
                          theorem Set.EAnnulus.oo_subset_oo {X : Type u_1} [PseudoMetricSpace X] {x : X} {r₁ R₁ r₂ R₂ : ENNReal} (hr : r₂ r₁) (hR : R₁ R₂) :
                          oo x r₁ R₁ oo x r₂ R₂
                          theorem Set.EAnnulus.oo_subset_oc {X : Type u_1} [PseudoMetricSpace X] {x : X} {r₁ R₁ r₂ R₂ : ENNReal} (hr : r₂ r₁) (hR : R₁ R₂) :
                          oo x r₁ R₁ oc x r₂ R₂
                          theorem Set.EAnnulus.oo_subset_co {X : Type u_1} [PseudoMetricSpace X] {x : X} {r₁ R₁ r₂ R₂ : ENNReal} (hr : r₂ r₁) (hR : R₁ R₂) :
                          oo x r₁ R₁ co x r₂ R₂
                          theorem Set.EAnnulus.oo_subset_cc {X : Type u_1} [PseudoMetricSpace X] {x : X} {r₁ R₁ r₂ R₂ : ENNReal} (hr : r₂ r₁) (hR : R₁ R₂) :
                          oo x r₁ R₁ cc x r₂ R₂
                          theorem Set.EAnnulus.oo_subset_oi {X : Type u_1} [PseudoMetricSpace X] {x : X} {r₁ R₁ r₂ : ENNReal} (hr : r₂ r₁) :
                          oo x r₁ R₁ oi x r₂
                          theorem Set.EAnnulus.oo_subset_ci {X : Type u_1} [PseudoMetricSpace X] {x : X} {r₁ R₁ r₂ : ENNReal} (hr : r₂ r₁) :
                          oo x r₁ R₁ ci x r₂
                          theorem Set.EAnnulus.oc_subset_oo {X : Type u_1} [PseudoMetricSpace X] {x : X} {r₁ R₁ r₂ R₂ : ENNReal} (hr : r₂ r₁) (hR : R₁ < R₂) :
                          oc x r₁ R₁ oo x r₂ R₂
                          theorem Set.EAnnulus.oc_subset_oc {X : Type u_1} [PseudoMetricSpace X] {x : X} {r₁ R₁ r₂ R₂ : ENNReal} (hr : r₂ r₁) (hR : R₁ R₂) :
                          oc x r₁ R₁ oc x r₂ R₂
                          theorem Set.EAnnulus.oc_subset_co {X : Type u_1} [PseudoMetricSpace X] {x : X} {r₁ R₁ r₂ R₂ : ENNReal} (hr : r₂ r₁) (hR : R₁ < R₂) :
                          oc x r₁ R₁ co x r₂ R₂
                          theorem Set.EAnnulus.oc_subset_cc {X : Type u_1} [PseudoMetricSpace X] {x : X} {r₁ R₁ r₂ R₂ : ENNReal} (hr : r₂ r₁) (hR : R₁ R₂) :
                          oc x r₁ R₁ cc x r₂ R₂
                          theorem Set.EAnnulus.oc_subset_oi {X : Type u_1} [PseudoMetricSpace X] {x : X} {r₁ R₁ r₂ : ENNReal} (hr : r₂ r₁) :
                          oo x r₁ R₁ oi x r₂
                          theorem Set.EAnnulus.oc_subset_ci {X : Type u_1} [PseudoMetricSpace X] {x : X} {r₁ R₁ r₂ : ENNReal} (hr : r₂ r₁) :
                          oc x r₁ R₁ ci x r₂
                          theorem Set.EAnnulus.co_subset_oo {X : Type u_1} [PseudoMetricSpace X] {x : X} {r₁ R₁ r₂ R₂ : ENNReal} (hr : r₂ < r₁) (hR : R₁ R₂) :
                          co x r₁ R₁ oo x r₂ R₂
                          theorem Set.EAnnulus.co_subset_oc {X : Type u_1} [PseudoMetricSpace X] {x : X} {r₁ R₁ r₂ R₂ : ENNReal} (hr : r₂ < r₁) (hR : R₁ R₂) :
                          co x r₁ R₁ oc x r₂ R₂
                          theorem Set.EAnnulus.co_subset_co {X : Type u_1} [PseudoMetricSpace X] {x : X} {r₁ R₁ r₂ R₂ : ENNReal} (hr : r₂ r₁) (hR : R₁ R₂) :
                          co x r₁ R₁ co x r₂ R₂
                          theorem Set.EAnnulus.co_subset_cc {X : Type u_1} [PseudoMetricSpace X] {x : X} {r₁ R₁ r₂ R₂ : ENNReal} (hr : r₂ r₁) (hR : R₁ R₂) :
                          co x r₁ R₁ cc x r₂ R₂
                          theorem Set.EAnnulus.co_subset_oi {X : Type u_1} [PseudoMetricSpace X] {x : X} {r₁ R₁ r₂ : ENNReal} (hr : r₂ < r₁) :
                          co x r₁ R₁ oi x r₂
                          theorem Set.EAnnulus.co_subset_ci {X : Type u_1} [PseudoMetricSpace X] {x : X} {r₁ R₁ r₂ : ENNReal} (hr : r₂ r₁) :
                          co x r₁ R₁ ci x r₂
                          theorem Set.EAnnulus.cc_subset_oo {X : Type u_1} [PseudoMetricSpace X] {x : X} {r₁ R₁ r₂ R₂ : ENNReal} (hr : r₂ < r₁) (hR : R₁ < R₂) :
                          cc x r₁ R₁ oo x r₂ R₂
                          theorem Set.EAnnulus.cc_subset_oc {X : Type u_1} [PseudoMetricSpace X] {x : X} {r₁ R₁ r₂ R₂ : ENNReal} (hr : r₂ < r₁) (hR : R₁ R₂) :
                          cc x r₁ R₁ oc x r₂ R₂
                          theorem Set.EAnnulus.cc_subset_co {X : Type u_1} [PseudoMetricSpace X] {x : X} {r₁ R₁ r₂ R₂ : ENNReal} (hr : r₂ r₁) (hR : R₁ < R₂) :
                          cc x r₁ R₁ co x r₂ R₂
                          theorem Set.EAnnulus.cc_subset_cc {X : Type u_1} [PseudoMetricSpace X] {x : X} {r₁ R₁ r₂ R₂ : ENNReal} (hr : r₂ r₁) (hR : R₁ R₂) :
                          cc x r₁ R₁ cc x r₂ R₂
                          theorem Set.EAnnulus.cc_subset_oi {X : Type u_1} [PseudoMetricSpace X] {x : X} {r₁ R₁ r₂ : ENNReal} (hr : r₂ < r₁) :
                          cc x r₁ R₁ oi x r₂
                          theorem Set.EAnnulus.cc_subset_ci {X : Type u_1} [PseudoMetricSpace X] {x : X} {r₁ R₁ r₂ : ENNReal} (hr : r₂ r₁) :
                          cc x r₁ R₁ ci x r₂
                          @[simp]
                          theorem Set.EAnnulus.oc_union_oo {X : Type u_1} [PseudoMetricSpace X] {x : X} {r r' R : ENNReal} (h₁ : r r') (h₂ : r' < R) :
                          oc x r r' oo x r' R = oo x r R
                          @[simp]
                          theorem Set.EAnnulus.oc_union_oc {X : Type u_1} [PseudoMetricSpace X] {x : X} {r r' R : ENNReal} (h₁ : r r') (h₂ : r' R) :
                          oc x r r' oc x r' R = oc x r R
                          @[simp]
                          theorem Set.EAnnulus.oo_union_co {X : Type u_1} [PseudoMetricSpace X] {x : X} {r r' R : ENNReal} (h₁ : r < r') (h₂ : r' R) :
                          oo x r r' co x r' R = oo x r R
                          @[simp]
                          theorem Set.EAnnulus.oo_union_cc {X : Type u_1} [PseudoMetricSpace X] {x : X} {r r' R : ENNReal} (h₁ : r < r') (h₂ : r' R) :
                          oo x r r' cc x r' R = oc x r R
                          @[simp]
                          theorem Set.EAnnulus.cc_union_oo {X : Type u_1} [PseudoMetricSpace X] {x : X} {r r' R : ENNReal} (h₁ : r r') (h₂ : r' < R) :
                          cc x r r' oo x r' R = co x r R
                          @[simp]
                          theorem Set.EAnnulus.cc_union_oc {X : Type u_1} [PseudoMetricSpace X] {x : X} {r r' R : ENNReal} (h₁ : r r') (h₂ : r' R) :
                          cc x r r' oc x r' R = cc x r R
                          @[simp]
                          theorem Set.EAnnulus.co_union_co {X : Type u_1} [PseudoMetricSpace X] {x : X} {r r' R : ENNReal} (h₁ : r r') (h₂ : r' R) :
                          co x r r' co x r' R = co x r R
                          @[simp]
                          theorem Set.EAnnulus.co_union_cc {X : Type u_1} [PseudoMetricSpace X] {x : X} {r r' R : ENNReal} (h₁ : r r') (h₂ : r' R) :
                          co x r r' cc x r' R = cc x r R
                          @[simp]
                          theorem Set.EAnnulus.oc_union_oi {X : Type u_1} [PseudoMetricSpace X] {x : X} {r R : ENNReal} (h : r R) :
                          oc x r R oi x R = oi x r
                          @[simp]
                          theorem Set.EAnnulus.oo_union_ci {X : Type u_1} [PseudoMetricSpace X] {x : X} {r R : ENNReal} (h : r < R) :
                          oo x r R ci x R = oi x r
                          @[simp]
                          theorem Set.EAnnulus.cc_union_oi {X : Type u_1} [PseudoMetricSpace X] {x : X} {r R : ENNReal} (h : r R) :
                          cc x r R oi x R = ci x r
                          @[simp]
                          theorem Set.EAnnulus.co_union_ci {X : Type u_1} [PseudoMetricSpace X] {x : X} {r R : ENNReal} (h : r R) :
                          co x r R ci x R = ci x r