Documentation

Carleson.ToMathlib.BoundedCompactSupport

EXPERIMENTAL

Bounded compactly supported functions #

The purpose of this file is to provide helper lemmas to streamline proofs that functions are (essentially) bounded, compactly supported and measurable.

Most functions we need to deal with are of this class. This can be a useful way to streamline proofs of L^p membership, in particular integrability.

Todo: make Mathlib.Tactic.FunProp work for this

This can be expanded as needed

Upstreaming status: should be upstreamed, but need to clarify design questions first

theorem MeasureTheory.eLpNorm_mono_ac {α : Type u_3} {m0 : MeasurableSpace α} {μ ν : Measure α} {ε : Type u_4} [TopologicalSpace ε] [ContinuousENorm ε] {f : αε} (hμν : ν.AbsolutelyContinuous μ) :
theorem MeasureTheory.MemLp.mono_ac {α : Type u_3} {m0 : MeasurableSpace α} {μ ν : Measure α} {ε : Type u_4} [TopologicalSpace ε] [ContinuousENorm ε] {f : αε} (hf : MemLp f μ) (hμν : ν.AbsolutelyContinuous μ) :
MemLp f ν
theorem MeasureTheory.MemLp.comp_quasiMeasurePreserving {α : Type u_3} {m0 : MeasurableSpace α} {μ : Measure α} {ε : Type u_4} [TopologicalSpace ε] [ContinuousENorm ε] {β : Type u_5} { : MeasurableSpace β} {f : αβ} {g : βε} {ν : Measure β} (hg : MemLp g ν) (hf : Measure.QuasiMeasurePreserving f μ ν) :
MemLp (g f) μ
theorem MeasureTheory.MemLp.ae_norm_le {α : Type u_3} {m0 : MeasurableSpace α} {μ : Measure α} {E : Type u_4} [NormedAddCommGroup E] {f : αE} (hf : MemLp f μ) :
∀ᵐ (x : α) μ, f x (eLpNorm f μ).toReal
structure MeasureTheory.BoundedCompactSupport {X : Type u_1} {E : Type u_2} [TopologicalSpace X] [MeasurableSpace X] [TopologicalSpace E] [ENorm E] [Zero E] (f : XE) (μ : Measure X := by volume_tac) :

Bounded compactly supported measurable functions

Instances For
    theorem isBounded_range_iff_forall_norm_le {α : Type u_3} {β : Sort u_4} [SeminormedAddCommGroup α] {f : βα} :
    Bornology.IsBounded (Set.range f) ∃ (C : ), ∀ (x : β), f x C

    Bounded compactly supported functions are in all Lᵖ spaces.

    Bounded compactly supported functions are integrable.

    theorem MeasureTheory.BoundedCompactSupport.enorm {X : Type u_1} {E : Type u_2} [TopologicalSpace X] [MeasurableSpace X] {μ : Measure X} {f : XE} [NormedAddCommGroup E] (hf : BoundedCompactSupport f μ) :
    BoundedCompactSupport (fun (x : X) => f x‖ₑ) μ
    theorem MeasureTheory.BoundedCompactSupport.norm {X : Type u_1} {E : Type u_2} [TopologicalSpace X] [MeasurableSpace X] {μ : Measure X} {f : XE} [NormedAddCommGroup E] (hf : BoundedCompactSupport f μ) :
    BoundedCompactSupport (fun (x : X) => f x) μ
    theorem MeasureTheory.BoundedCompactSupport.comp_left_norm {X : Type u_1} {E : Type u_2} [TopologicalSpace X] [MeasurableSpace X] {μ : Measure X} {f : XE} [NormedAddCommGroup E] {F : Type u_3} [NormedAddCommGroup F] {g : EF} (hf : BoundedCompactSupport f μ) (hg : g 0 = 0) (hg1 : Continuous g) (hg2 : ∀ (a : E), g a = a) :
    theorem MeasureTheory.BoundedCompactSupport.add {X : Type u_1} {E : Type u_2} [TopologicalSpace X] [MeasurableSpace X] {μ : Measure X} {f : XE} [NormedAddCommGroup E] {g : XE} (hf : BoundedCompactSupport f μ) (hg : BoundedCompactSupport g μ) :
    theorem MeasureTheory.BoundedCompactSupport.sub {X : Type u_1} {E : Type u_2} [TopologicalSpace X] [MeasurableSpace X] {μ : Measure X} {f : XE} [NormedAddCommGroup E] {g : XE} (hf : BoundedCompactSupport f μ) (hg : BoundedCompactSupport g μ) :
    theorem MeasureTheory.BoundedCompactSupport.mul_bdd_right {X : Type u_1} [TopologicalSpace X] [MeasurableSpace X] {μ : Measure X} {𝕜 : Type u_3} [RCLike 𝕜] {f g : X𝕜} (hf : BoundedCompactSupport f μ) (hg : MemLp g μ) :
    theorem MeasureTheory.BoundedCompactSupport.mul_bdd_left {X : Type u_1} [TopologicalSpace X] [MeasurableSpace X] {μ : Measure X} {𝕜 : Type u_3} [RCLike 𝕜] {f g : X𝕜} (hf : BoundedCompactSupport f μ) (hg : MemLp g μ) :
    theorem MeasureTheory.BoundedCompactSupport.mul {X : Type u_1} [TopologicalSpace X] [MeasurableSpace X] {μ : Measure X} {𝕜 : Type u_3} [RCLike 𝕜] {f g : X𝕜} (hf : BoundedCompactSupport f μ) (hg : BoundedCompactSupport g μ) :
    theorem MeasureTheory.BoundedCompactSupport.integrable_mul {X : Type u_1} [TopologicalSpace X] [MeasurableSpace X] {μ : Measure X} {𝕜 : Type u_3} [RCLike 𝕜] {f g : X𝕜} (hf : BoundedCompactSupport f μ) (hg : Integrable g μ) :
    Integrable (f * g) μ
    theorem MeasureTheory.BoundedCompactSupport.integrable_fun_mul {X : Type u_1} [TopologicalSpace X] [MeasurableSpace X] {μ : Measure X} {𝕜 : Type u_3} [RCLike 𝕜] {f g : X𝕜} (hf : BoundedCompactSupport f μ) (hg : Integrable g μ) :
    Integrable (fun (x : X) => f x * g x) μ
    theorem HasCompactSupport.star {X : Type u_1} [TopologicalSpace X] {𝕜 : Type u_3} [RCLike 𝕜] {f : X𝕜} (hf : HasCompactSupport f) :
    HasCompactSupport fun (i : X) => Star.star (f i)
    theorem MeasureTheory.BoundedCompactSupport.eLpNorm_star {X : Type u_1} [MeasurableSpace X] {μ : Measure X} {𝕜 : Type u_3} [RCLike 𝕜] {f : X𝕜} :
    eLpNorm (star f) μ = eLpNorm f μ
    theorem MeasureTheory.BoundedCompactSupport.conj {X : Type u_1} [TopologicalSpace X] [MeasurableSpace X] {μ : Measure X} {𝕜 : Type u_3} [RCLike 𝕜] {f : X𝕜} (hf : BoundedCompactSupport f μ) :
    theorem MeasureTheory.BoundedCompactSupport.starRingEnd {X : Type u_1} [TopologicalSpace X] [MeasurableSpace X] {μ : Measure X} {𝕜 : Type u_3} [RCLike 𝕜] {f : X𝕜} (hf : BoundedCompactSupport f μ) :
    BoundedCompactSupport (fun (x : X) => (_root_.starRingEnd 𝕜) (f x)) μ
    theorem MeasureTheory.BoundedCompactSupport.const_mul {X : Type u_1} [TopologicalSpace X] [MeasurableSpace X] {μ : Measure X} {𝕜 : Type u_3} [RCLike 𝕜] {f : X𝕜} (hf : BoundedCompactSupport f μ) (c : 𝕜) :
    BoundedCompactSupport (fun (x : X) => c * f x) μ
    theorem MeasureTheory.BoundedCompactSupport.mul_const {X : Type u_1} [TopologicalSpace X] [MeasurableSpace X] {μ : Measure X} {𝕜 : Type u_3} [RCLike 𝕜] {f : X𝕜} (hf : BoundedCompactSupport f μ) (c : 𝕜) :
    BoundedCompactSupport (fun (x : X) => f x * c) μ
    theorem MeasureTheory.BoundedCompactSupport.mono {X : Type u_1} {E : Type u_2} [TopologicalSpace X] [MeasurableSpace X] {μ : Measure X} {f : XE} [NormedAddCommGroup E] {g : XENNReal} (hg : BoundedCompactSupport g μ) (hf : AEStronglyMeasurable f μ) (hfg : ∀ (x : X), f x‖ₑ g x) :

    If ‖f‖ is bounded by g and g is bounded compactly supported, then so is f.

    theorem MeasureTheory.BoundedCompactSupport.mono_norm {X : Type u_1} {E : Type u_2} [TopologicalSpace X] [MeasurableSpace X] {μ : Measure X} {f : XE} [NormedAddCommGroup E] {g : X} (hg : BoundedCompactSupport g μ) (hf : AEStronglyMeasurable f μ) (hfg : ∀ (x : X), f x g x) :
    theorem MeasureTheory.BoundedCompactSupport.toComplex {X : Type u_1} [TopologicalSpace X] [MeasurableSpace X] {μ : Measure X} {f : X} (hf : BoundedCompactSupport f μ) :
    BoundedCompactSupport (fun (x : X) => (f x)) μ
    theorem MeasureTheory.BoundedCompactSupport.finset_sum {X : Type u_1} {E : Type u_2} [TopologicalSpace X] [MeasurableSpace X] {μ : Measure X} [NormedAddCommGroup E] {ι : Type u_4} {s : Finset ι} {F : ιXE} (hF : is, BoundedCompactSupport (F i) μ) :
    BoundedCompactSupport (fun (x : X) => is, F i x) μ

    A finite sum of bounded compactly supported functions is bounded compactly supported.

    theorem MeasureTheory.BoundedCompactSupport.sq_eLpNorm_le_sums {X : Type u_1} [TopologicalSpace X] [MeasurableSpace X] {μ : Measure X} {ι : Type u_4} [IsFiniteMeasureOnCompacts μ] {f : ιX} (hf : ∀ (i : ι), BoundedCompactSupport (f i) μ) {s : Finset ι} :
    eLpNorm (fun (x : X) => is, f i x) 2 μ ^ 2 is, eLpNorm (f i) 2 μ ^ 2 + is, js with i j, (x : X), f i x * (_root_.starRingEnd ) (f j x) μ‖ₑ

    Used in Proposition 2.0.4.

    theorem MeasureTheory.BoundedCompactSupport.prod_mul {X : Type u_1} [TopologicalSpace X] [MeasurableSpace X] {μ : Measure X} {𝕜 : Type u_3} [RCLike 𝕜] {Y : Type u_4} [MeasureSpace Y] {f : X𝕜} {g : Y𝕜} {ν : Measure Y} [TopologicalSpace Y] [R1Space (X × Y)] (hf : BoundedCompactSupport f μ) (hg : BoundedCompactSupport g ν) :
    BoundedCompactSupport (Function.uncurry fun (x : X) (y : Y) => f x * g y) (μ.prod ν)

    An elementary tensor of bounded compactly supported functions is bounded compactly supported.

    theorem BoundedCompactSupport.mul_bdd_right'' {X : Type u_1} {𝕜 : Type u_2} [MeasurableSpace X] [MetricSpace X] {W : Type u_6} [MeasurableSpace W] [TopologicalSpace W] {μ : MeasureTheory.Measure W} {f : X𝕜} {ν : MeasureTheory.Measure X} [RCLike 𝕜] (hf : MeasureTheory.BoundedCompactSupport f ν) {e : WX} {g : W𝕜} (he : Continuous e) (he1 : MeasureTheory.Measure.QuasiMeasurePreserving e μ ν) (hg : MeasureTheory.AEStronglyMeasurable g μ) (hg1 : ∀ (K : Set X), IsCompact KIsCompact (e ⁻¹' K tsupport g)) (hg2 : ∀ (A : Set X), Bornology.IsBounded ABornology.IsBounded (g '' (e ⁻¹' A))) :
    MeasureTheory.BoundedCompactSupport (fun (x : W) => f (e x) * g x) μ
    theorem BoundedCompactSupport.mul_bdd_left' {X : Type u_1} {𝕜 : Type u_2} [MeasurableSpace X] [MetricSpace X] {W : Type u_6} [MeasurableSpace W] [TopologicalSpace W] {μ : MeasureTheory.Measure W} {f : X𝕜} {ν : MeasureTheory.Measure X} [RCLike 𝕜] (hf : MeasureTheory.BoundedCompactSupport f ν) {e : WX} {g : W𝕜} (he : Continuous e) (he1 : MeasureTheory.Measure.QuasiMeasurePreserving e μ ν) (hg : MeasureTheory.AEStronglyMeasurable g μ) (hg1 : ∀ (K : Set X), IsCompact KIsCompact (e ⁻¹' K tsupport g)) (hg2 : ∀ (A : Set X), Bornology.IsBounded ABornology.IsBounded (g '' (e ⁻¹' A))) :
    MeasureTheory.BoundedCompactSupport (fun (x : W) => g x * f (e x)) μ