Documentation

Carleson.Operators

Carleson operators #

theorem bcs_of_measurable_of_le_indicator_f {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [PseudoMetricSpace X] [ProofData a q K σ₁ σ₂ F G] {f : X} (hf : Measurable f) (h2f : ∀ (x : X), f x F.indicator 1 x) :
theorem bcs_of_measurable_of_le_indicator_g {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [PseudoMetricSpace X] [ProofData a q K σ₁ σ₂ F G] {g : X} (hg : Measurable g) (h2g : ∀ (x : X), g x G.indicator 1 x) :
def carlesonOn {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [PseudoMetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] (p : 𝔓 X) (f : X) :
X

The operator T_𝔭 defined in Proposition 2.0.2.

Equations
Instances For
    theorem measurable_carlesonOn {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [PseudoMetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {p : 𝔓 X} {f : X} (measf : Measurable f) :
    def carlesonSum {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [PseudoMetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] ( : Set (𝔓 X)) (f : X) (x : X) :

    The operator T_ℭ f defined at the bottom of Section 7.4. We will use this in other places of the formalization as well.

    Equations
    Instances For
      theorem measurable_carlesonSum {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [PseudoMetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] { : Set (𝔓 X)} {f : X} (measf : Measurable f) :
      theorem MeasureTheory.AEStronglyMeasurable.carlesonOn {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [PseudoMetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {p : 𝔓 X} {f : X} (hf : AEStronglyMeasurable f volume) :
      theorem MeasureTheory.AEStronglyMeasurable.carlesonSum {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [PseudoMetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] { : Set (𝔓 X)} {f : X} (hf : AEStronglyMeasurable f volume) :
      theorem carlesonOn_def' {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [PseudoMetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] (p : 𝔓 X) (f : X) :
      carlesonOn p f = (E p).indicator fun (x : X) => (y : X), Ks (𝔰 p) x y * f y * Complex.exp (Complex.I * (((Q x) y) - ((Q x) x)))
      theorem support_carlesonOn_subset_E {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [PseudoMetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {p : 𝔓 X} {f : X} :
      theorem support_carlesonSum_subset {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [PseudoMetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] { : Set (𝔓 X)} {f : X} :
      Function.support (carlesonSum f) p, (𝓘 p)
      theorem MeasureTheory.BoundedCompactSupport.bddAbove_norm_carlesonOn {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [PseudoMetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] (p : 𝔓 X) {f : X} (hf : BoundedCompactSupport f volume) :
      theorem MeasureTheory.BoundedCompactSupport.carlesonOn {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [PseudoMetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {p : 𝔓 X} {f : X} (hf : BoundedCompactSupport f volume) :
      theorem MeasureTheory.BoundedCompactSupport.bddAbove_norm_carlesonSum {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [PseudoMetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] { : Set (𝔓 X)} {f : X} (hf : BoundedCompactSupport f volume) :
      theorem MeasureTheory.BoundedCompactSupport.carlesonSum {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [PseudoMetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] { : Set (𝔓 X)} {f : X} (hf : BoundedCompactSupport f volume) :
      theorem carlesonSum_inter_add_inter_compl {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [PseudoMetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {f : X} {x : X} (A B : Set (𝔓 X)) :
      carlesonSum (A B) f x + carlesonSum (A B) f x = carlesonSum A f x
      theorem sum_carlesonSum_of_pairwiseDisjoint {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [PseudoMetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {ι : Type u_2} {f : X} {x : X} {A : ιSet (𝔓 X)} {s : Finset ι} (hs : (↑s).PairwiseDisjoint A) :
      is, carlesonSum (A i) f x = carlesonSum (⋃ is, A i) f x

      Adjoint operators #

      def adjointCarleson {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] (p : 𝔓 X) (f : X) (x : X) :

      The definition of Tₚ*g(x), defined above Lemma 7.4.1

      Equations
      Instances For
        def adjointCarlesonSum {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] ( : Set (𝔓 X)) (f : X) (x : X) :

        The definition of T_ℭ*g(x), defined at the bottom of Section 7.4

        Equations
        Instances For
          theorem adjointCarlesonSum_inter {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {A B : Set (𝔓 X)} {f : X} {x : X} :

          A helper lemma used in Lemma 7.5.10.

          theorem adjoint_eq_adjoint_indicator {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {p p' : 𝔓 X} {f : X} (h : E p (𝓘 p')) :
          theorem MeasureTheory.StronglyMeasurable.adjointCarleson {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {p : 𝔓 X} {f : X} (hf : StronglyMeasurable f) :
          theorem MeasureTheory.AEStronglyMeasurable.adjointCarleson {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {p : 𝔓 X} {f : X} (hf : AEStronglyMeasurable f volume) :
          theorem MeasureTheory.StronglyMeasurable.adjointCarlesonSum {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {f : X} { : Set (𝔓 X)} (hf : StronglyMeasurable f) :
          theorem MeasureTheory.AEStronglyMeasurable.adjointCarlesonSum {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {f : X} { : Set (𝔓 X)} (hf : AEStronglyMeasurable f volume) :
          theorem MeasureTheory.BoundedCompactSupport.bddAbove_norm_adjointCarleson {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] (p : 𝔓 X) {f : X} (hf : BoundedCompactSupport f volume) :
          theorem MeasureTheory.BoundedCompactSupport.adjointCarleson {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {p : 𝔓 X} {f : X} (hf : BoundedCompactSupport f volume) :
          theorem MeasureTheory.BoundedCompactSupport.bddAbove_norm_adjointCarlesonSum {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {f : X} { : Set (𝔓 X)} (hf : BoundedCompactSupport f volume) :
          theorem MeasureTheory.BoundedCompactSupport.adjointCarlesonSum {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {f : X} { : Set (𝔓 X)} (hf : BoundedCompactSupport f volume) :
          theorem adjointCarleson_adjoint {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {f g : X} (hf : MeasureTheory.BoundedCompactSupport f MeasureTheory.volume) (hg : MeasureTheory.BoundedCompactSupport g MeasureTheory.volume) (p : 𝔓 X) :
          (x : X), (starRingEnd ) (g x) * carlesonOn p f x = (y : X), (starRingEnd ) (adjointCarleson p g y) * f y

          adjointCarleson is the adjoint of carlesonOn.

          theorem adjointCarlesonSum_adjoint {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {f g : X} (hf : MeasureTheory.BoundedCompactSupport f MeasureTheory.volume) (hg : MeasureTheory.BoundedCompactSupport g MeasureTheory.volume) ( : Set (𝔓 X)) :
          (x : X), (starRingEnd ) (g x) * carlesonSum f x = (x : X), (starRingEnd ) (adjointCarlesonSum g x) * f x

          adjointCarlesonSum is the adjoint of carlesonSum.

          theorem integrable_adjointCarlesonSum {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] (s : Set (𝔓 X)) {f : X} (hf : MeasureTheory.BoundedCompactSupport f MeasureTheory.volume) :