Documentation

Carleson.ForestOperator.PointwiseEstimate

Section 7.1 and Lemma 7.1.3 #

def TileStructure.Forest.σ {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {n : } (t : Forest X n) (u : 𝔓 X) (x : X) :

The definition σ(u, x) given in Section 7.1. We may assume u ∈ t whenever proving things about this definition.

Equations
Instances For
    def TileStructure.Forest.σMax {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {n : } (t : Forest X n) (u : 𝔓 X) (x : X) (hσ : (t u x).Nonempty) :
    Equations
    • t.σMax u x = (t u x).max'
    Instances For
      def TileStructure.Forest.σMin {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {n : } (t : Forest X n) (u : 𝔓 X) (x : X) (hσ : (t u x).Nonempty) :
      Equations
      • t.σMin u x = (t u x).min'
      Instances For
        def TileStructure.Forest.𝓙₀ {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] (𝔖 : Set (𝔓 X)) :
        Set (Grid X)

        The definition of `𝓙₀(𝔖), defined above Lemma 7.1.2

        Equations
        Instances For
          def TileStructure.Forest.𝓙 {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] (𝔖 : Set (𝔓 X)) :
          Set (Grid X)

          The definition of `𝓙(𝔖), defined above Lemma 7.1.2

          Equations
          Instances For
            theorem TileStructure.Forest.𝓙_subset_𝓙₀ {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {𝔖 : Set (𝔓 X)} :
            𝓙 𝔖 𝓙₀ 𝔖
            theorem TileStructure.Forest.pairwiseDisjoint_𝓙 {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {𝔖 : Set (𝔓 X)} :
            (𝓙 𝔖).PairwiseDisjoint fun (I : Grid X) => I
            def TileStructure.Forest.𝓛₀ {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] (𝔖 : Set (𝔓 X)) :
            Set (Grid X)

            The definition of `𝓛₀(𝔖), defined above Lemma 7.1.2

            Equations
            Instances For
              def TileStructure.Forest.𝓛 {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] (𝔖 : Set (𝔓 X)) :
              Set (Grid X)

              The definition of `𝓛(𝔖), defined above Lemma 7.1.2

              Equations
              Instances For
                theorem TileStructure.Forest.𝓛_subset_𝓛₀ {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {𝔖 : Set (𝔓 X)} :
                𝓛 𝔖 𝓛₀ 𝔖
                def TileStructure.Forest.approxOnCube {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {E' : Type u_2} [NormedAddCommGroup E'] [NormedSpace E'] (C : Set (Grid X)) (f : XE') (x : X) :
                E'

                The projection operator P_𝓒 f(x), given above Lemma 7.1.3. In lemmas the c will be pairwise disjoint on C.

                Equations
                Instances For
                  theorem TileStructure.Forest.stronglyMeasurable_approxOnCube {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {E' : Type u_2} [NormedAddCommGroup E'] [NormedSpace E'] (C : Set (Grid X)) (f : XE') :
                  theorem TileStructure.Forest.integrable_approxOnCube {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {E' : Type u_2} [NormedAddCommGroup E'] [NormedSpace E'] (C : Set (Grid X)) {f : XE'} :
                  theorem TileStructure.Forest.approxOnCube_nonneg {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {C : Set (Grid X)} {f : X} (hf : ∀ (y : X), f y 0) {x : X} :
                  theorem TileStructure.Forest.approxOnCube_apply {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {E' : Type u_2} [NormedAddCommGroup E'] [NormedSpace E'] {C : Set (Grid X)} (hC : C.PairwiseDisjoint fun (I : Grid X) => I) (f : XE') {x : X} {J : Grid X} (hJ : J C) (xJ : x J) :
                  approxOnCube C f x = ⨍ (y : X) in J, f y
                  theorem TileStructure.Forest.boundedCompactSupport_approxOnCube {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {𝕜 : Type u_3} [RCLike 𝕜] {C : Set (Grid X)} {f : X𝕜} :
                  theorem TileStructure.Forest.integral_eq_lintegral_approxOnCube {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {C : Set (Grid X)} (hC : C.PairwiseDisjoint fun (I : Grid X) => I) {J : Grid X} (hJ : J C) {f : X} (hf : MeasureTheory.BoundedCompactSupport f) :
                  ENNReal.ofReal (∫ (y : X) in J, f y) = ∫⁻ (y : X) in J, approxOnCube C (fun (x : X) => f x) y‖₊
                  theorem TileStructure.Forest.approxOnCube_ofReal {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] (C : Set (Grid X)) (f : X) (x : X) :
                  approxOnCube C (fun (x : X) => (f x)) x = (approxOnCube C f x)
                  theorem TileStructure.Forest.norm_approxOnCube_le_approxOnCube_norm {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {E' : Type u_2} [NormedAddCommGroup E'] [NormedSpace E'] {C : Set (Grid X)} {f : XE'} {x : X} :
                  approxOnCube C f x approxOnCube C (fun (x : X) => f x) x
                  def TileStructure.Forest.cubeOf {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] (i : ) (x : X) :

                  The definition I_i(x), given above Lemma 7.1.3. The cube of scale s that contains x. There is at most 1 such cube, if it exists.

                  Equations
                  Instances For
                    def TileStructure.Forest.nontangentialMaximalFunction {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] (θ : Θ X) (f : X) (x : X) :

                    The definition T_𝓝^θ f(x), given in (7.1.3). For convenience, the suprema are written a bit differently than in the blueprint (avoiding cubeOf), but this should be equivalent. This is 0 if x doesn't lie in a cube.

                    Equations
                    • One or more equations did not get rendered due to their size.
                    Instances For
                      theorem TileStructure.Forest.MeasureTheory.Measurable.nontangentialMaximalFunction {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {θ : Θ X} {f : X} :
                      def TileStructure.Forest.boundaryOperator {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {n : } (t : Forest X n) (u : 𝔓 X) (f : X) (x : X) :

                      The operator S_{1,𝔲} f(x), given in (7.1.4).

                      Equations
                      • One or more equations did not get rendered due to their size.
                      Instances For
                        theorem TileStructure.Forest.MeasureTheory.Measurable.boundaryOperator {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {n : } {t : Forest X n} {u : 𝔓 X} {f : X} :
                        Measurable (t.boundaryOperator u f)
                        def TileStructure.Forest.𝓑 {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] :

                        The indexing set for the collection of balls 𝓑, defined above Lemma 7.1.3.

                        Equations
                        Instances For
                          def TileStructure.Forest.c𝓑 {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] (z : × Grid X) :
                          X

                          The center function for the collection of balls 𝓑.

                          Equations
                          Instances For
                            def TileStructure.Forest.r𝓑 {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] (z : × Grid X) :

                            The radius function for the collection of balls 𝓑.

                            Equations
                            Instances For
                              theorem TileStructure.Forest.𝓑_finite {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] :
                              𝓑.Finite
                              theorem TileStructure.Forest.convex_scales {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {n : } {t : Forest X n} {u : 𝔓 X} {x : X} (hu : u t) :
                              (↑(t u x)).OrdConnected

                              Lemma 7.1.1, freely translated.

                              @[simp]
                              theorem TileStructure.Forest.biUnion_𝓙 {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {𝔖 : Set (𝔓 X)} :
                              J𝓙 𝔖, J = ⋃ (I : Grid X), I

                              Part of Lemma 7.1.2

                              @[simp]
                              theorem TileStructure.Forest.biUnion_𝓛 {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {𝔖 : Set (𝔓 X)} :
                              J𝓛 𝔖, J = ⋃ (I : Grid X), I

                              Part of Lemma 7.1.2

                              theorem TileStructure.Forest.pairwiseDisjoint_𝓛 {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {𝔖 : Set (𝔓 X)} :
                              (𝓛 𝔖).PairwiseDisjoint fun (I : Grid X) => I

                              Part of Lemma 7.1.2

                              @[irreducible]

                              The constant used in first_tree_pointwise. Has value 10 * 2 ^ (104 * a ^ 3) in the blueprint.

                              Equations
                              Instances For
                                theorem TileStructure.Forest.C7_1_4_def (a : ) :
                                C7_1_4 a = 10 * 2 ^ (104 * a ^ 3)
                                theorem TileStructure.Forest.first_tree_pointwise {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {n : } {t : Forest X n} {u : 𝔓 X} {x x' : X} {f : X} {L : Grid X} (hu : u t) (hL : L 𝓛 ((fun (x : 𝔓 X) => t.𝔗 x) u)) (hx : x L) (hx' : x' L) (hf : MeasureTheory.BoundedCompactSupport f) :
                                it u x, ∫ (y : X), (Complex.exp (Complex.I * (-((𝒬 u) y) + ((Q x) y) + ((𝒬 u) x) - ((Q x) x))) - 1) * Ks i x y * f y‖₊ (C7_1_4 a) * MB MeasureTheory.volume 𝓑 c𝓑 r𝓑 (approxOnCube (𝓙 ((fun (x : 𝔓 X) => t.𝔗 x) u)) fun (x : X) => f x) x'

                                Lemma 7.1.4

                                theorem TileStructure.Forest.second_tree_pointwise {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {n : } {t : Forest X n} {u : 𝔓 X} {x x' : X} {f : X} {L : Grid X} (hu : u t) (hL : L 𝓛 ((fun (x : 𝔓 X) => t.𝔗 x) u)) (hx : x L) (hx' : x' L) :
                                it u x, ∫ (y : X), Ks i x y * approxOnCube (𝓙 ((fun (x : 𝔓 X) => t.𝔗 x) u)) f y‖₊ nontangentialMaximalFunction (𝒬 u) (approxOnCube (𝓙 ((fun (x : 𝔓 X) => t.𝔗 x) u)) f) x'

                                Lemma 7.1.5

                                @[irreducible]

                                The constant used in third_tree_pointwise. Has value 2 ^ (151 * a ^ 3) in the blueprint.

                                Equations
                                Instances For
                                  theorem TileStructure.Forest.C7_1_6_def (a : ) :
                                  C7_1_6 a = 2 ^ (151 * a ^ 3)
                                  theorem TileStructure.Forest.sum_p_eq_sum_I_sum_p {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {n : } (t : Forest X n) (u : 𝔓 X) (x : X) (f : XNNReal) :
                                  pFinset.filter (fun (x : 𝔓 X) => x t.𝔗 u) Finset.univ, (E p).indicator 1 x * f (𝔠 p) (𝔰 p) = I : Grid X, pFinset.filter (fun (p : 𝔓 X) => p t.𝔗 u 𝓘 p = I) Finset.univ, (E p).indicator 1 x * f (c I) (s I)
                                  theorem TileStructure.Forest.third_tree_pointwise {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {n : } {t : Forest X n} {u : 𝔓 X} {x x' : X} {f : X} {L : Grid X} (hu : u t) (hL : L 𝓛 ((fun (x : 𝔓 X) => t.𝔗 x) u)) (hx : x L) (hx' : x' L) (hf : MeasureTheory.BoundedCompactSupport f) :
                                  it u x, ∫ (y : X), Ks i x y * (f y - approxOnCube (𝓙 ((fun (x : 𝔓 X) => t.𝔗 x) u)) f y)‖₊ (C7_1_6 a) * t.boundaryOperator u (approxOnCube (𝓙 ((fun (x : 𝔓 X) => t.𝔗 x) u)) fun (x : X) => f x) x'

                                  Lemma 7.1.6

                                  @[irreducible]

                                  The constant used in pointwise_tree_estimate. Has value 2 ^ (151 * a ^ 3) in the blueprint.

                                  Equations
                                  Instances For
                                    theorem TileStructure.Forest.pointwise_tree_estimate {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {n : } {t : Forest X n} {u : 𝔓 X} {x x' : X} {f : X} {L : Grid X} (hu : u t) (hL : L 𝓛 ((fun (x : 𝔓 X) => t.𝔗 x) u)) (hx : x L) (hx' : x' L) (hf : MeasureTheory.BoundedCompactSupport f) :
                                    carlesonSum ((fun (x : 𝔓 X) => t.𝔗 x) u) (fun (y : X) => Complex.exp (Complex.I * -((𝒬 u) y)) * f y) x‖₊ (C7_1_3 a) * (MB MeasureTheory.volume 𝓑 c𝓑 r𝓑 (approxOnCube (𝓙 ((fun (x : 𝔓 X) => t.𝔗 x) u)) fun (x : X) => f x) x' + t.boundaryOperator u (approxOnCube (𝓙 ((fun (x : 𝔓 X) => t.𝔗 x) u)) fun (x : X) => f x) x') + nontangentialMaximalFunction (𝒬 u) (approxOnCube (𝓙 ((fun (x : 𝔓 X) => t.𝔗 x) u)) f) x'

                                    Lemma 7.1.3.