Documentation

Carleson.ToMathlib.MeasureTheory.Integral.MeanInequalities

theorem ENNReal.lintegral_prod_norm_pow_le' {α : Type u_2} {ι : Type u_3} [MeasurableSpace α] {μ : MeasureTheory.Measure α} {s : Finset ι} {f : ιαENNReal} (hf : is, AEMeasurable (f i) μ) {p : ιENNReal} (hp : is, (p i)⁻¹ = 1) :
∫⁻ (a : α), is, f i a μ is, MeasureTheory.eLpNorm (f i) (p i) μ

A version of Hölder with multiple arguments, allowing as an exponent.

theorem ENNReal.lintegral_mul_le_eLpNorm_mul_eLqNorm {α : Type u_1} [MeasurableSpace α] {μ : MeasureTheory.Measure α} {p q : ENNReal} (hpq : p.IsConjExponent q) {f g : αENNReal} (hf : AEMeasurable f μ) (hg : AEMeasurable g μ) :
∫⁻ (a : α), (f * g) a μ MeasureTheory.eLpNorm f p μ * MeasureTheory.eLpNorm g q μ

Hölder's inequality for functions α → ℝ≥0∞, using exponents in ℝ≥0∞

theorem ENNReal.eLpNorm_top_convolution_le {𝕜 : Type u𝕜} {G : Type uG} [MeasurableSpace G] {μ : MeasureTheory.Measure G} {E : Type uE} {E' : Type uE'} {F : Type uF} [NormedAddCommGroup E] [NormedAddCommGroup E'] [NormedAddCommGroup F] [NontriviallyNormedField 𝕜] [NormedSpace 𝕜 E] [NormedSpace 𝕜 E'] [NormedSpace 𝕜 F] [NormedSpace F] {L : E →L[𝕜] E' →L[𝕜] F} [AddCommGroup G] [TopologicalSpace G] [IsTopologicalAddGroup G] [BorelSpace G] [μ.IsAddHaarMeasure] [LocallyCompactSpace G] [SecondCountableTopology G] [MeasurableSpace E] [OpensMeasurableSpace E] [MeasurableSpace E'] [OpensMeasurableSpace E'] {p q : ENNReal} (hpq : p.IsConjExponent q) {f : GE} {g : GE'} (hf : AEMeasurable f μ) (hg : AEMeasurable g μ) (c : ) (hL : ∀ (x y : G), (L (f x)) (g y) c * f x * g y) :

Special case of Young's convolution inequality when r = ∞.

Special case of Young's convolution inequality when r = ∞.

theorem ENNReal.enorm_convolution_le_eLpNorm_mul_eLpNorm_mul_eLpNorm {𝕜 : Type u𝕜} {G : Type uG} [MeasurableSpace G] {μ : MeasureTheory.Measure G} {E : Type uE} {E' : Type uE'} {F : Type uF} [NormedAddCommGroup E] [NormedAddCommGroup E'] [NormedAddCommGroup F] [NontriviallyNormedField 𝕜] [NormedSpace 𝕜 E] [NormedSpace 𝕜 E'] [NormedSpace 𝕜 F] [NormedSpace F] {L : E →L[𝕜] E' →L[𝕜] F} [AddCommGroup G] [TopologicalSpace G] [IsTopologicalAddGroup G] [BorelSpace G] [μ.IsAddHaarMeasure] [LocallyCompactSpace G] [SecondCountableTopology G] [MeasurableSpace E] [OpensMeasurableSpace E] [MeasurableSpace E'] [OpensMeasurableSpace E'] {p q r : } (hp : 1 p) (hq : 1 q) (hr : 1 r) (hpqr : p⁻¹ + q⁻¹ = r⁻¹ + 1) {f : GE} {g : GE'} (hf : AEMeasurable f μ) (hg : AEMeasurable g μ) (c : ) (hL : ∀ (x y : G), (L (f x)) (g y) c * f x * g y) (x : G) :

This inequality is used in the proof of Young's convolution inequality eLpNorm_convolution_le_ofReal. See enorm_convolution_le_eLpNorm_mul_eLpNorm_mul_eLpNorm' for a version assuming a.e. strong measurability instead.

theorem ENNReal.enorm_convolution_le_eLpNorm_mul_eLpNorm_mul_eLpNorm' {𝕜 : Type u𝕜} {G : Type uG} [MeasurableSpace G] {μ : MeasureTheory.Measure G} {E : Type uE} {E' : Type uE'} {F : Type uF} [NormedAddCommGroup E] [NormedAddCommGroup E'] [NormedAddCommGroup F] [NontriviallyNormedField 𝕜] [NormedSpace 𝕜 E] [NormedSpace 𝕜 E'] [NormedSpace 𝕜 F] [NormedSpace F] {L : E →L[𝕜] E' →L[𝕜] F} [AddCommGroup G] [TopologicalSpace G] [IsTopologicalAddGroup G] [BorelSpace G] [μ.IsAddHaarMeasure] [LocallyCompactSpace G] [SecondCountableTopology G] {p q r : } (hp : 1 p) (hq : 1 q) (hr : 1 r) (hpqr : p⁻¹ + q⁻¹ = r⁻¹ + 1) {f : GE} {g : GE'} (hf : MeasureTheory.AEStronglyMeasurable f μ) (hg : MeasureTheory.AEStronglyMeasurable g μ) (c : ) (hL : ∀ (x y : G), (L (f x)) (g y) c * f x * g y) (x : G) :

This inequality is used in the proof of Young's convolution inequality eLpNorm_convolution_le_ofReal'.

theorem ENNReal.eLpNorm_convolution_le_ofReal {𝕜 : Type u𝕜} {G : Type uG} [MeasurableSpace G] {μ : MeasureTheory.Measure G} {E : Type uE} {E' : Type uE'} {F : Type uF} [NormedAddCommGroup E] [NormedAddCommGroup E'] [NormedAddCommGroup F] [NontriviallyNormedField 𝕜] [NormedSpace 𝕜 E] [NormedSpace 𝕜 E'] [NormedSpace 𝕜 F] [NormedSpace F] {L : E →L[𝕜] E' →L[𝕜] F} [AddCommGroup G] [TopologicalSpace G] [IsTopologicalAddGroup G] [BorelSpace G] [μ.IsAddHaarMeasure] [LocallyCompactSpace G] [SecondCountableTopology G] [MeasurableSpace E] [OpensMeasurableSpace E] [MeasurableSpace E'] [OpensMeasurableSpace E'] {p q r : } (hp : 1 p) (hq : 1 q) (hr : 1 r) (hpqr : p⁻¹ + q⁻¹ = r⁻¹ + 1) {f : GE} {g : GE'} (hf : AEMeasurable f μ) (hg : AEMeasurable g μ) (c : ) (hL : ∀ (x y : G), (L (f x)) (g y) c * f x * g y) :
theorem ENNReal.eLpNorm_convolution_le_ofReal' {𝕜 : Type u𝕜} {G : Type uG} [MeasurableSpace G] {μ : MeasureTheory.Measure G} {E : Type uE} {E' : Type uE'} {F : Type uF} [NormedAddCommGroup E] [NormedAddCommGroup E'] [NormedAddCommGroup F] [NontriviallyNormedField 𝕜] [NormedSpace 𝕜 E] [NormedSpace 𝕜 E'] [NormedSpace 𝕜 F] [NormedSpace F] {L : E →L[𝕜] E' →L[𝕜] F} [AddCommGroup G] [TopologicalSpace G] [IsTopologicalAddGroup G] [BorelSpace G] [μ.IsAddHaarMeasure] [LocallyCompactSpace G] [SecondCountableTopology G] {p q r : } (hp : 1 p) (hq : 1 q) (hr : 1 r) (hpqr : p⁻¹ + q⁻¹ = r⁻¹ + 1) {f : GE} {g : GE'} (hf : MeasureTheory.AEStronglyMeasurable f μ) (hg : MeasureTheory.AEStronglyMeasurable g μ) (c : ) (hL : ∀ (x y : G), (L (f x)) (g y) c * f x * g y) :
theorem ENNReal.eLpNorm_convolution_le_of_norm_le_mul {𝕜 : Type u𝕜} {G : Type uG} [MeasurableSpace G] {μ : MeasureTheory.Measure G} {E : Type uE} {E' : Type uE'} {F : Type uF} [NormedAddCommGroup E] [NormedAddCommGroup E'] [NormedAddCommGroup F] [NontriviallyNormedField 𝕜] [NormedSpace 𝕜 E] [NormedSpace 𝕜 E'] [NormedSpace 𝕜 F] [NormedSpace F] (L : E →L[𝕜] E' →L[𝕜] F) [AddCommGroup G] [TopologicalSpace G] [IsTopologicalAddGroup G] [BorelSpace G] [μ.IsAddHaarMeasure] [LocallyCompactSpace G] [SecondCountableTopology G] [MeasurableSpace E] [OpensMeasurableSpace E] [MeasurableSpace E'] [OpensMeasurableSpace E'] {p q r : ENNReal} (hp : 1 p) (hq : 1 q) (hr : 1 r) (hpqr : p⁻¹ + q⁻¹ = r⁻¹ + 1) {f : GE} {g : GE'} (hf : AEMeasurable f μ) (hg : AEMeasurable g μ) (c : ) (hL : ∀ (x y : G), (L (f x)) (g y) c * f x * g y) :

Young's convolution inequality: the ℒr seminorm of a convolution (f ⋆[L, μ] g) is bounded by ‖L‖ₑ times the product of the ℒp and ℒq seminorms, where 1 / p + 1 / q = 1 / r + 1. Here ‖L‖ₑ is replaced with a bound for L restricted to the ranges of f and g; see eLpNorm_convolution_le_enorm_mul for a version using ‖L‖ₑ explicitly.

theorem ENNReal.eLpNorm_convolution_le_of_norm_le_mul' {𝕜 : Type u𝕜} {G : Type uG} [MeasurableSpace G] {μ : MeasureTheory.Measure G} {E : Type uE} {E' : Type uE'} {F : Type uF} [NormedAddCommGroup E] [NormedAddCommGroup E'] [NormedAddCommGroup F] [NontriviallyNormedField 𝕜] [NormedSpace 𝕜 E] [NormedSpace 𝕜 E'] [NormedSpace 𝕜 F] [NormedSpace F] (L : E →L[𝕜] E' →L[𝕜] F) [AddCommGroup G] [TopologicalSpace G] [IsTopologicalAddGroup G] [BorelSpace G] [μ.IsAddHaarMeasure] [LocallyCompactSpace G] [SecondCountableTopology G] {p q r : ENNReal} (hp : 1 p) (hq : 1 q) (hr : 1 r) (hpqr : p⁻¹ + q⁻¹ = r⁻¹ + 1) {f : GE} {g : GE'} (hf : MeasureTheory.AEStronglyMeasurable f μ) (hg : MeasureTheory.AEStronglyMeasurable g μ) (c : ) (hL : ∀ (x y : G), (L (f x)) (g y) c * f x * g y) :

Young's convolution inequality: the ℒr seminorm of a convolution (f ⋆[L, μ] g) is bounded by ‖L‖ₑ times the product of the ℒp and ℒq seminorms, where 1 / p + 1 / q = 1 / r + 1. Here ‖L‖ₑ is replaced with a bound for L restricted to the ranges of f and g; see eLpNorm_convolution_le_enorm_mul for a version using ‖L‖ₑ explicitly.

Young's convolution inequality: the ℒr seminorm of a convolution (f ⋆[L, μ] g) is bounded by ‖L‖ₑ times the product of the ℒp and ℒq seminorms, where 1 / p + 1 / q = 1 / r + 1.

Young's convolution inequality: the ℒr seminorm of a convolution (f ⋆[L, μ] g) is bounded by ‖L‖ₑ times the product of the ℒp and ℒq seminorms, where 1 / p + 1 / q = 1 / r + 1.

theorem ENNReal.eLpNorm_Ioc_convolution_le_of_norm_le_mul {𝕜 : Type u𝕜} {E : Type uE} {E' : Type uE'} {F : Type uF} [NormedAddCommGroup E] [NormedAddCommGroup E'] [NormedAddCommGroup F] [NontriviallyNormedField 𝕜] [NormedSpace 𝕜 E] [NormedSpace 𝕜 E'] [NormedSpace 𝕜 F] [NormedSpace F] (L : E →L[𝕜] E' →L[𝕜] F) (a : ) {T : } [hT : Fact (0 < T)] {p q r : ENNReal} (hp : 1 p) (hq : 1 q) (hr : 1 r) (hpqr : p⁻¹ + q⁻¹ = r⁻¹ + 1) {f : E} {g : E'} (hfT : Function.Periodic f T) (hgT : Function.Periodic g T) (hf : MeasureTheory.AEStronglyMeasurable f MeasureTheory.volume) (hg : MeasureTheory.AEStronglyMeasurable g MeasureTheory.volume) (c : ) (hL : ∀ (x y : ), (L (f x)) (g y) c * f x * g y) :

Young's convolution inequality on (a, a + T]: the ℒr seminorm of the convolution of T-periodic functions over (a, a + T] is bounded by ‖L‖ₑ times the product of the ℒp and ℒq seminorms on that interval, where 1 / p + 1 / q = 1 / r + 1. Here ‖L‖ₑ is replaced with a bound for L restricted to the ranges of f and g; see eLpNorm_Ioc_convolution_le_enorm_mul for a version using ‖L‖ₑ explicitly.

theorem ENNReal.eLpNorm_Ioc_convolution_le_enorm_mul {𝕜 : Type u𝕜} {E : Type uE} {E' : Type uE'} {F : Type uF} [NormedAddCommGroup E] [NormedAddCommGroup E'] [NormedAddCommGroup F] [NontriviallyNormedField 𝕜] [NormedSpace 𝕜 E] [NormedSpace 𝕜 E'] [NormedSpace 𝕜 F] [NormedSpace F] (L : E →L[𝕜] E' →L[𝕜] F) (a : ) {T : } [hT : Fact (0 < T)] {p q r : ENNReal} (hp : 1 p) (hq : 1 q) (hr : 1 r) (hpqr : p⁻¹ + q⁻¹ = r⁻¹ + 1) {f : E} {g : E'} (hfT : Function.Periodic f T) (hgT : Function.Periodic g T) (hf : MeasureTheory.AEStronglyMeasurable f MeasureTheory.volume) (hg : MeasureTheory.AEStronglyMeasurable g MeasureTheory.volume) :

Young's convolution inequality on (a, a + T]: the ℒr seminorm of the convolution of T-periodic functions over (a, a + T] is bounded by ‖L‖ₑ times the product of the ℒp and ℒq seminorms on that interval, where 1 / p + 1 / q = 1 / r + 1.