Documentation

Carleson.ToMathlib.HardyLittlewood

This should roughly contain the contents of chapter 9.

theorem covering_separable_space (X : Type u_1) [PseudoMetricSpace X] [TopologicalSpace.SeparableSpace X] :
∃ (C : Set X), C.Countable r > 0, cC, Metric.ball c r = Set.univ

Lemma 9.0.2

theorem exists_ball_subset_ball_two {X : Type u_1} [PseudoMetricSpace X] [TopologicalSpace.SeparableSpace X] (c : X) {r : } (hr : 0 < r) :
c'.choose, ∃ (m : ), Metric.ball c r Metric.ball c' (2 ^ m) 2 ^ m 2 * r Metric.ball c' (2 ^ m) Metric.ball c (4 * r)
theorem continuous_average_ball {X : Type u_1} {E : Type u_2} [MetricSpace X] [MeasurableSpace X] {μ : MeasureTheory.Measure X} [NormedAddCommGroup E] {f : XE} (hf : MeasureTheory.LocallyIntegrable f μ) :
ContinuousOn (fun (x : X × ) => ⨍⁻ (y : X) in Metric.ball x.1 x.2, f y‖ₑ μ) (Set.univ ×ˢ Set.Ioi 0)

Use the dominated convergence theorem e.g. [Folland, Real Analysis. Modern Techniques and Their Applications, Lemma 3.16]

def maximalFunction {X : Type u_1} {E : Type u_2} [MetricSpace X] [MeasurableSpace X] [NormedAddCommGroup E] {ι : Type u_3} (μ : MeasureTheory.Measure X) (𝓑 : Set ι) (c : ιX) (r : ι) (p : ) (u : XE) (x : X) :

The Hardy-Littlewood maximal function w.r.t. a collection of balls 𝓑. M_{𝓑, p} in the blueprint.

Equations
@[reducible, inline]
abbrev MB {X : Type u_1} {E : Type u_2} [MetricSpace X] [MeasurableSpace X] [NormedAddCommGroup E] {ι : Type u_3} (μ : MeasureTheory.Measure X) (𝓑 : Set ι) (c : ιX) (r : ι) (u : XE) (x : X) :

The Hardy-Littlewood maximal function w.r.t. a collection of balls 𝓑 with exponent 1. M_𝓑 in the blueprint.

Equations
theorem MB_def {X : Type u_1} {E : Type u_2} [MetricSpace X] [MeasurableSpace X] {μ : MeasureTheory.Measure X} [NormedAddCommGroup E] {f : XE} {x : X} {ι : Type u_3} {𝓑 : Set ι} {c : ιX} {r : ι} :
MB μ 𝓑 c r f x = i𝓑, (Metric.ball (c i) (r i)).indicator (fun (x : X) => ⨍⁻ (y : X) in Metric.ball (c i) (r i), f y‖ₑ μ) x
theorem maximalFunction_eq_MB {X : Type u_1} {E : Type u_2} [MetricSpace X] [MeasurableSpace X] [NormedAddCommGroup E] {ι : Type u_3} {μ : MeasureTheory.Measure X} {𝓑 : Set ι} {c : ιX} {r : ι} {p : } {u : XE} {x : X} (hp : 0 p) :
maximalFunction μ 𝓑 c r p u x = MB μ 𝓑 c r (fun (x : X) => u x ^ p) x ^ p⁻¹
theorem MeasureTheory.LocallyIntegrable.integrableOn_ball {X : Type u_1} {E : Type u_2} [MetricSpace X] [MeasurableSpace X] {μ : Measure X} [NormedAddCommGroup E] [ProperSpace X] {f : XE} (hf : LocallyIntegrable f μ) {x : X} {r : } :
theorem MeasureTheory.LocallyIntegrable.laverage_ball_lt_top {X : Type u_1} {E : Type u_2} [MetricSpace X] [MeasurableSpace X] {μ : Measure X} [NormedAddCommGroup E] [ProperSpace X] {f : XE} (hf : LocallyIntegrable f μ) {x₀ : X} {r : } :
⨍⁻ (x : X) in Metric.ball x₀ r, f x‖ₑ μ <
theorem NNReal.smul_ennreal_eq_mul (x : NNReal) (y : ENNReal) :
x y = x * y
theorem exists_disjoint_subfamily_covering_enlargement_closedBall' {ι : Type u_3} {α : Type u_4} [MetricSpace α] (t : Set ι) (x : ια) (r : ι) (R : ) (hr : at, r a R) (τ : ) ( : 3 < τ) :
ut, (u.PairwiseDisjoint fun (a : ι) => Metric.closedBall (x a) (r a)) at, bu, Metric.closedBall (x a) (r a) Metric.closedBall (x b) (τ * r b) ut, 0 r ur a (τ - 1) / 2 * r b
theorem Vitali.exists_disjoint_subfamily_covering_enlargement_ball {ι : Type u_3} {α : Type u_4} [MetricSpace α] (t : Set ι) (x : ια) (r : ι) (R : ) (hr : at, r a R) (τ : ) ( : 3 < τ) :
ut, (u.PairwiseDisjoint fun (a : ι) => Metric.ball (x a) (r a)) at, bu, Metric.ball (x a) (r a) Metric.ball (x b) (τ * r b)
theorem Finset.exists_image_le {α : Type u_4} {β : Type u_5} [Nonempty β] [Preorder β] [IsDirected β fun (x1 x2 : β) => x1 x2] (s : Finset α) (f : αβ) :
∃ (b : β), as, f a b
theorem Set.Finite.exists_image_le {α : Type u_4} {β : Type u_5} [Nonempty β] [Preorder β] [IsDirected β fun (x1 x2 : β) => x1 x2] {s : Set α} (hs : s.Finite) (f : αβ) :
∃ (b : β), as, f a b
theorem Set.Countable.measure_biUnion_le_lintegral {X : Type u_1} {A : NNReal} [MetricSpace X] [MeasurableSpace X] {μ : MeasureTheory.Measure X} [μ.IsDoubling A] {ι : Type u_3} {𝓑 : Set ι} {c : ιX} {r : ι} [OpensMeasurableSpace X] (h𝓑 : 𝓑.Countable) (l : ENNReal) (u : XENNReal) (R : ) (hR : a𝓑, r a R) (h2u : i𝓑, l * μ (Metric.ball (c i) (r i)) ∫⁻ (x : X) in Metric.ball (c i) (r i), u x μ) :
l * μ (⋃ i𝓑, Metric.ball (c i) (r i)) A ^ 2 * ∫⁻ (x : X), u x μ
theorem Finset.measure_biUnion_le_lintegral {X : Type u_1} {A : NNReal} [MetricSpace X] [MeasurableSpace X] {μ : MeasureTheory.Measure X} [μ.IsDoubling A] {ι : Type u_3} {c : ιX} {r : ι} [OpensMeasurableSpace X] (𝓑 : Finset ι) (l : ENNReal) (u : XENNReal) (h2u : i𝓑, l * μ (Metric.ball (c i) (r i)) ∫⁻ (x : X) in Metric.ball (c i) (r i), u x μ) :
l * μ (⋃ i𝓑, Metric.ball (c i) (r i)) A ^ 2 * ∫⁻ (x : X), u x μ
theorem MeasureTheory.AEStronglyMeasurable.maximalFunction {X : Type u_1} {E : Type u_2} [MetricSpace X] [MeasurableSpace X] {μ : Measure X} [NormedAddCommGroup E] {ι : Type u_3} {𝓑 : Set ι} {c : ιX} {r : ι} [BorelSpace X] {p : } {u : XE} (h𝓑 : 𝓑.Countable) :
theorem MeasureTheory.AEStronglyMeasurable.maximalFunction_toReal {X : Type u_1} {E : Type u_2} [MetricSpace X] [MeasurableSpace X] {μ : Measure X} [NormedAddCommGroup E] {ι : Type u_3} {𝓑 : Set ι} {c : ιX} {r : ι} [BorelSpace X] {p : } {u : XE} (h𝓑 : 𝓑.Countable) :
AEStronglyMeasurable (fun (x : X) => (maximalFunction μ 𝓑 c r p u x).toReal) μ
theorem MB_le_eLpNormEssSup {X : Type u_1} {E : Type u_2} [MetricSpace X] [MeasurableSpace X] {μ : MeasureTheory.Measure X} [NormedAddCommGroup E] {ι : Type u_3} {𝓑 : Set ι} {c : ιX} {r : ι} {u : XE} {x : X} :
MB μ 𝓑 c r u x MeasureTheory.eLpNormEssSup u μ
theorem HasStrongType.MB_top {X : Type u_1} {E : Type u_2} [MetricSpace X] [MeasurableSpace X] {μ : MeasureTheory.Measure X} [NormedAddCommGroup E] {ι : Type u_3} {𝓑 : Set ι} {c : ιX} {r : ι} [BorelSpace X] (h𝓑 : 𝓑.Countable) :
MeasureTheory.HasStrongType (fun (u : XE) (x : X) => MB μ 𝓑 c r u x) μ μ 1
theorem HasWeakType.MB_one {X : Type u_1} {E : Type u_2} {A : NNReal} [MetricSpace X] [MeasurableSpace X] {μ : MeasureTheory.Measure X} [μ.IsDoubling A] [NormedAddCommGroup E] {ι : Type u_3} {𝓑 : Set ι} {c : ιX} {r : ι} [BorelSpace X] (h𝓑 : 𝓑.Countable) {R : } (hR : i𝓑, r i R) :
MeasureTheory.HasWeakType (MB μ 𝓑 c r) 1 1 μ μ (A ^ 2)
theorem MB_ae_ne_top {X : Type u_1} {E : Type u_2} {A : NNReal} [MetricSpace X] [MeasurableSpace X] {μ : MeasureTheory.Measure X} [μ.IsDoubling A] [NormedAddCommGroup E] {ι : Type u_3} {𝓑 : Set ι} {c : ιX} {r : ι} [BorelSpace X] (h𝓑 : 𝓑.Countable) {R : } (hR : i𝓑, r i R) {u : XE} (hu : MeasureTheory.MemLp u 1 μ) :
∀ᵐ (x : X) μ, MB μ 𝓑 c r u x
theorem MeasureTheory.MemLp.eLpNormEssSup_lt_top {E : Type u_2} [NormedAddCommGroup E] {α : Type u_4} [MeasurableSpace α] {μ : Measure α} {u : αE} (hu : MemLp u μ) :
theorem MB_ae_ne_top' {X : Type u_1} {E : Type u_2} {A : NNReal} [MetricSpace X] [MeasurableSpace X] {μ : MeasureTheory.Measure X} [μ.IsDoubling A] [NormedAddCommGroup E] {ι : Type u_3} {𝓑 : Set ι} {c : ιX} {r : ι} [BorelSpace X] (h𝓑 : 𝓑.Countable) {R : } (hR : i𝓑, r i R) u : XE (hu : MeasureTheory.MemLp u μ MeasureTheory.MemLp u 1 μ) :
∀ᵐ (x : X) μ, MB μ 𝓑 c r u x
theorem MeasureTheory.AESublinearOn.maximalFunction {X : Type u_1} {E : Type u_2} {A : NNReal} [MetricSpace X] [MeasurableSpace X] {μ : Measure X} [μ.IsDoubling A] [NormedAddCommGroup E] {ι : Type u_3} {𝓑 : Set ι} {c : ιX} {r : ι} [BorelSpace X] [NormedSpace E] [MeasurableSpace E] [BorelSpace E] [IsFiniteMeasureOnCompacts μ] [ProperSpace X] (h𝓑 : 𝓑.Countable) {R : } (hR : i𝓑, r i R) :
AESublinearOn (fun (u : XE) (x : X) => MB μ 𝓑 c r u x) (fun (f : XE) => MemLp f μ MemLp f 1 μ) 1 μ
@[irreducible]
def CMB (A p : NNReal) :

The constant factor in the statement that M_𝓑 has strong type.

Equations
theorem CMB_def (A p : NNReal) :
CMB A p = MeasureTheory.C_realInterpolation 1 1 (↑p) 1 (A ^ 2) 1 (↑p)⁻¹
theorem hasStrongType_MB {X : Type u_1} {E : Type u_2} {A : NNReal} [MetricSpace X] [MeasurableSpace X] {μ : MeasureTheory.Measure X} [μ.IsDoubling A] [NormedAddCommGroup E] {ι : Type u_3} {𝓑 : Set ι} {c : ιX} {r : ι} [BorelSpace X] [NormedSpace E] [MeasurableSpace E] [BorelSpace E] [MeasureTheory.IsFiniteMeasureOnCompacts μ] [ProperSpace X] [Nonempty X] [μ.IsOpenPosMeasure] (h𝓑 : 𝓑.Countable) {R : } (hR : i𝓑, r i R) {p : NNReal} (hp : 1 < p) :
MeasureTheory.HasStrongType (fun (u : XE) (x : X) => MB μ 𝓑 c r u x) (↑p) (↑p) μ μ (CMB A p)

Special case of equation (2.0.44). The proof is given between (9.0.12) and (9.0.34). Use the real interpolation theorem instead of following the blueprint.

theorem hasStrongType_MB_finite {X : Type u_1} {E : Type u_2} {A : NNReal} [MetricSpace X] [MeasurableSpace X] {μ : MeasureTheory.Measure X} [μ.IsDoubling A] [NormedAddCommGroup E] {ι : Type u_3} {𝓑 : Set ι} {c : ιX} {r : ι} [BorelSpace X] [NormedSpace E] [MeasurableSpace E] [BorelSpace E] [MeasureTheory.IsFiniteMeasureOnCompacts μ] [ProperSpace X] [Nonempty X] [μ.IsOpenPosMeasure] (h𝓑 : 𝓑.Finite) {p : NNReal} (hp : 1 < p) :
MeasureTheory.HasStrongType (fun (u : XE) (x : X) => MB μ 𝓑 c r u x) (↑p) (↑p) μ μ (CMB A p)
@[irreducible]
def C2_0_6 (A p₁ p₂ : NNReal) :

The constant factor in the statement that M_{𝓑, p} has strong type.

Equations
theorem C2_0_6_def (A p₁ p₂ : NNReal) :
C2_0_6 A p₁ p₂ = CMB A (p₂ / p₁) ^ (↑p₁)⁻¹
theorem hasStrongType_maximalFunction {X : Type u_1} {E : Type u_2} {A : NNReal} [MetricSpace X] [MeasurableSpace X] {μ : MeasureTheory.Measure X} [μ.IsDoubling A] [NormedAddCommGroup E] {ι : Type u_3} {𝓑 : Set ι} {c : ιX} {r : ι} [BorelSpace X] [MeasureTheory.IsFiniteMeasureOnCompacts μ] [ProperSpace X] [Nonempty X] [μ.IsOpenPosMeasure] {p₁ p₂ : NNReal} (h𝓑 : 𝓑.Countable) {R : } (hR : i𝓑, r i R) (hp₁ : 1 p₁) (hp₁₂ : p₁ < p₂) :
MeasureTheory.HasStrongType (fun (u : XE) (x : X) => maximalFunction μ 𝓑 c r (↑p₁) u x) (↑p₂) (↑p₂) μ μ (C2_0_6 A p₁ p₂)

Equation (2.0.44). The proof is given between (9.0.34) and (9.0.36).

theorem hasStrongType_maximalFunction_todo {X : Type u_1} {E : Type u_2} {A : NNReal} [MetricSpace X] [MeasurableSpace X] {μ : MeasureTheory.Measure X} [μ.IsDoubling A] [NormedAddCommGroup E] {ι : Type u_3} {𝓑 : Set ι} {c : ιX} {r : ι} [BorelSpace X] [MeasureTheory.IsFiniteMeasureOnCompacts μ] [ProperSpace X] [Nonempty X] [μ.IsOpenPosMeasure] {p₁ p₂ : NNReal} (h𝓑 : 𝓑.Countable) (hp₁ : 1 p₁) (hp₁₂ : p₁ < p₂) :
MeasureTheory.HasStrongType (fun (u : XE) (x : X) => maximalFunction μ 𝓑 c r (↑p₁) u x) (↑p₂) (↑p₂) μ μ (C2_0_6 A p₁ p₂)

hasStrongType_maximalFunction minus the assumption hR. A proof for basically this result is given in Chapter 9, everything following after equation (9.0.36).

theorem lowerSemiContinuous_MB {X : Type u_1} {E : Type u_2} [MetricSpace X] [MeasurableSpace X] {μ : MeasureTheory.Measure X} [NormedAddCommGroup E] {f : XE} {ι : Type u_3} {𝓑 : Set ι} {c : ιX} {r : ι} (hf : MeasureTheory.LocallyIntegrable f μ) :
LowerSemicontinuous (MB μ 𝓑 c r f)

Use lowerSemicontinuous_iff_isOpen_preimage and continuous_average_ball

theorem hasWeakType_maximalFunction {X : Type u_1} {E : Type u_2} {A : NNReal} [MetricSpace X] [MeasurableSpace X] {μ : MeasureTheory.Measure X} [μ.IsDoubling A] [NormedAddCommGroup E] {ι : Type u_3} {𝓑 : Set ι} {c : ιX} {r : ι} [BorelSpace X] [MeasureTheory.IsFiniteMeasureOnCompacts μ] [ProperSpace X] [Nonempty X] [μ.IsOpenPosMeasure] {p₁ p₂ : NNReal} (h𝓑 : 𝓑.Countable) (hp₁ : 1 p₁) (hp₁₂ : p₁ p₂) :
MeasureTheory.HasWeakType (fun (u : XE) (x : X) => maximalFunction μ 𝓑 c r (↑p₁) u x) (↑p₂) (↑p₂) μ μ (A ^ 2)

hasStrongType_maximalFunction minus the assumption hR, but where p₁ = p₂ is possible and we only conclude a weak-type estimate. The proof of this should be basically the same as that of hasStrongType_maximalFunction + hasStrongType_maximalFunction_todo, but starting with HasWeakType.MB_one instead of hasStrongType_MB. (For p₂ > p₁ you can also derive this from hasStrongType_maximalFunction_todo)

def globalMaximalFunction {X : Type u_1} {E : Type u_2} {A : NNReal} [MetricSpace X] [MeasurableSpace X] (μ : MeasureTheory.Measure X) [NormedAddCommGroup E] [ProperSpace X] [μ.IsDoubling A] (p : ) (u : XE) (x : X) :

The transformation M characterized in Proposition 2.0.6. p is 1 in the blueprint, and globalMaximalFunction μ p u = (M (u ^ p)) ^ p⁻¹

Equations

Equation (2.0.45).

def C2_0_6' (A p₁ p₂ : NNReal) :

The constant factor in the statement that M has strong type.

Equations
theorem hasStrongType_globalMaximalFunction {X : Type u_1} {E : Type u_2} {A : NNReal} [MetricSpace X] [MeasurableSpace X] {μ : MeasureTheory.Measure X} [μ.IsDoubling A] [NormedAddCommGroup E] [ProperSpace X] [BorelSpace X] [MeasureTheory.IsFiniteMeasureOnCompacts μ] [Nonempty X] [μ.IsOpenPosMeasure] {p₁ p₂ : NNReal} (hp₁ : 1 p₁) (hp₁₂ : p₁ < p₂) :
MeasureTheory.HasStrongType (fun (u : XE) (x : X) => globalMaximalFunction μ (↑p₁) u x) (↑p₂) (↑p₂) μ μ (C2_0_6' A p₁ p₂)

Equation (2.0.46). Easy from hasStrongType_maximalFunction. Ideally prove separately HasStrongType.const_smul and HasStrongType.const_mul.

theorem hasWeakType_globalMaximalFunction {X : Type u_1} {E : Type u_2} {A : NNReal} [MetricSpace X] [MeasurableSpace X] {μ : MeasureTheory.Measure X} [μ.IsDoubling A] [NormedAddCommGroup E] [ProperSpace X] [BorelSpace X] [MeasureTheory.IsFiniteMeasureOnCompacts μ] [Nonempty X] [μ.IsOpenPosMeasure] {p₁ p₂ : NNReal} (hp₁ : 1 p₁) (hp₁₂ : p₁ p₂) :
MeasureTheory.HasWeakType (fun (u : XE) (x : X) => globalMaximalFunction μ (↑p₁) u x) (↑p₂) (↑p₂) μ μ (A ^ 4)