- coeGrid : GridStructure.Grid X β Set X
- s : GridStructure.Grid X β β€
- c : GridStructure.Grid X β X
- inj : Function.Injective fun (i : GridStructure.Grid X) => (βi, s i)
- Grid_subset_biUnion {i : GridStructure.Grid X} (k : β€) : k β Set.Ico (-βS) (s i) β βi β β j β s β»ΒΉ' {k}, βj
- fundamental_dyadic' {i j : GridStructure.Grid X} : s i β€ s j β βi β βj β¨ Disjoint βi βj
- small_boundary {i : GridStructure.Grid X} {t : NNReal} (ht : βD ^ (-βS - s i) β€ t) : MeasureTheory.volume.real {x : X | x β βi β§ EMetric.infEdist x (βi)αΆ β€ βt * βD ^ s i} β€ 2 * βt ^ ΞΊ * MeasureTheory.volume.real βi
- π : Type u
- fintype_π : Fintype (PreTileStructure.π π X)
- π : PreTileStructure.π π X β GridStructure.Grid X
- surjective_π : Function.Surjective PreTileStructure.π
- π¬ : PreTileStructure.π π X β Ξ X
Instances
Equations
- π X = PreTileStructure.π π X
Instances For
Equations
Instances For
Equations
- instInhabitedπ = { default := β―.choose }
Instances For
Instances For
A tile structure.
- coeGrid : GridStructure.Grid X β Set X
- s : GridStructure.Grid X β β€
- c : GridStructure.Grid X β X
- inj : Function.Injective fun (i : GridStructure.Grid X) => (βi, s i)
- Grid_subset_biUnion {i : GridStructure.Grid X} (k : β€) : k β Set.Ico (-βS) (s i) β βi β β j β s β»ΒΉ' {k}, βj
- fundamental_dyadic' {i j : GridStructure.Grid X} : s i β€ s j β βi β βj β¨ Disjoint βi βj
- small_boundary {i : GridStructure.Grid X} {t : NNReal} (ht : βD ^ (-βS - s i) β€ t) : MeasureTheory.volume.real {x : X | x β βi β§ EMetric.infEdist x (βi)αΆ β€ βt * βD ^ s i} β€ 2 * βt ^ ΞΊ * MeasureTheory.volume.real βi
- π : PreTileStructure.π β X β GridStructure.Grid X
- π¬ : PreTileStructure.π β X β Ξ X
- range_π¬ : Set.range π¬ β Set.range βQ
- Ξ© : PreTileStructure.π β X β Set (Ξ X)
- biUnion_Ξ© {i : GridStructure.Grid X} : Set.range βQ β β p β PreTileStructure.π β»ΒΉ' {i}, Ξ© p
- disjoint_Ξ© {p p' : PreTileStructure.π β X} (h : p β p') (hp : PreTileStructure.π p = PreTileStructure.π p') : Disjoint (Ξ© p) (Ξ© p')
- relative_fundamental_dyadic {p p' : PreTileStructure.π β X} (h : PreTileStructure.π p β€ PreTileStructure.π p') : Disjoint (Ξ© p) (Ξ© p') β¨ Ξ© p' β Ξ© p
- subset_cball {p : PreTileStructure.π β X} : Ξ© p β Metric.ball (π¬ p) 1
Instances
Equations
- One or more equations did not get rendered due to their size.
Instances For
Equations
- One or more equations did not get rendered due to their size.
Instances For
Equations
- One or more equations did not get rendered due to their size.
Instances For
The set E
defined in Proposition 2.0.2.
Instances For
The operator T_π
defined in Proposition 2.0.2, considered on the set F
.
It is the map T β (1_F * Β·) : f β¦ T (1_F * f)
, also denoted T1_F
The operator T
in Proposition 2.0.2 is therefore applied to (F := Set.univ)
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
The operator T_β f
defined at the bottom of Section 7.4.
We will use this in other places of the formalization as well.
Equations
- carlesonSum β f x = β p β Finset.filter (fun (p : π X) => p β β) Finset.univ, carlesonOn p f x
Instances For
Equations
Equations
- toTileLike p = (π p, Ξ© p)
Instances For
This is not defined as such in the blueprint, but Ξ»p β² Ξ»'p'
can be written using
smul l p β€ smul l' p'
.
Beware: smul 1 p
is very different from toTileLike p
.
Equations
- smul l p = (π p, Metric.ball (π¬ p) l)
Instances For
Equations
Lemma 5.3.1
Lemma 5.3.2 (generalizing 1
to k > 0
)
Lemma 5.3.3, Equation (5.3.3)
Lemma 5.3.3, Equation (5.3.4)
Lemma 5.3.3, Equation (5.3.5)
From a TileLike, we can construct a set. This is used in the definitions Eβ
and Eβ
.
Instances For
Equations
- Eβ p = (toTileLike p).toSet
Instances For
π(π')
in the blueprint is lowerClosure π'
in Lean.
This density is defined to live in ββ₯0β
. Use ENNReal.toReal
to get a real number.
Equations
- One or more equations did not get rendered due to their size.
Instances For
This density is defined to live in ββ₯0β
. Use ENNReal.toReal
to get a real number.
Equations
Instances For
Stack sizes #
The number of tiles p
in s
whose underlying cube π p
contains x
.
Equations
- stackSize C x = β p β Finset.filter (fun (p : π X) => p β C) Finset.univ, (β(π p)).indicator 1 x
Instances For
Decomposing a set of tiles into disjoint subfamilies #
Given any family of tiles, one can extract a maximal disjoint subfamily, covering everything.
A disjoint subfamily of A
covering everything.
Equations
- maximalSubfamily A = β―.choose
Instances For
Iterating maximalSubfamily
to obtain disjoint subfamilies of A
.
Equations
- iteratedMaximalSubfamily A n = maximalSubfamily (A \ β (i : β{i : β | i < n}), let_fun this := β―; iteratedMaximalSubfamily A βi)
Instances For
Any set of tiles can be written as the union of disjoint subfamilies, their number being controlled by the maximal stack size.