Documentation

Carleson.TileStructure

class PreTileStructure {𝕜 : Type u_1} [RCLike 𝕜] {X : Type u} {A : outParam NNReal} [PseudoMetricSpace X] [MeasureTheory.DoublingMeasure X A] [FunctionDistances 𝕜 X] (Q : outParam (MeasureTheory.SimpleFunc X (Θ X))) (D : outParam ) (κ : outParam ) (S : outParam ) (o : outParam X) extends GridStructure X D κ S o :
Type (max (u + 1) (u_2 + 1))
Instances
    instance instFintype𝔓 {𝕜 : Type u_1} [RCLike 𝕜] {X : Type u} {A : NNReal} [PseudoMetricSpace X] [MeasureTheory.DoublingMeasure X A] {D : } {κ : } {S : } {o : X} [FunctionDistances 𝕜 X] {Q : MeasureTheory.SimpleFunc X (Θ X)} [PreTileStructure Q D κ S o] :
    Equations
    def 𝓘 {𝕜 : Type u_1} [RCLike 𝕜] {X : Type u} {A : NNReal} [PseudoMetricSpace X] [MeasureTheory.DoublingMeasure X A] {D : } {κ : } {S : } {o : X} [FunctionDistances 𝕜 X] {Q : MeasureTheory.SimpleFunc X (Θ X)} [PreTileStructure Q D κ S o] :
    𝔓 XGrid X
    Equations
    theorem surjective_𝓘 {𝕜 : Type u_1} [RCLike 𝕜] {X : Type u} {A : NNReal} [PseudoMetricSpace X] [MeasureTheory.DoublingMeasure X A] {D : } {κ : } {S : } {o : X} [FunctionDistances 𝕜 X] {Q : MeasureTheory.SimpleFunc X (Θ X)} [PreTileStructure Q D κ S o] :
    instance instInhabited𝔓 {𝕜 : Type u_1} [RCLike 𝕜] {X : Type u} {A : NNReal} [PseudoMetricSpace X] [MeasureTheory.DoublingMeasure X A] {D : } {κ : } {S : } {o : X} [FunctionDistances 𝕜 X] {Q : MeasureTheory.SimpleFunc X (Θ X)} [PreTileStructure Q D κ S o] :
    Equations
    def 𝔠 {𝕜 : Type u_1} [RCLike 𝕜] {X : Type u} {A : NNReal} [PseudoMetricSpace X] [MeasureTheory.DoublingMeasure X A] {D : } {κ : } {S : } {o : X} [FunctionDistances 𝕜 X] {Q : MeasureTheory.SimpleFunc X (Θ X)} [PreTileStructure Q D κ S o] (p : 𝔓 X) :
    X
    Equations
    def 𝔰 {𝕜 : Type u_1} [RCLike 𝕜] {X : Type u} {A : NNReal} [PseudoMetricSpace X] [MeasureTheory.DoublingMeasure X A] {D : } {κ : } {S : } {o : X} [FunctionDistances 𝕜 X] {Q : MeasureTheory.SimpleFunc X (Θ X)} [PreTileStructure Q D κ S o] (p : 𝔓 X) :
    Equations

    A tile structure.

    Instances
      Equations
      • One or more equations did not get rendered due to their size.
      Equations
      • One or more equations did not get rendered due to their size.
      Equations
      • One or more equations did not get rendered due to their size.
      @[simp]
      theorem dist_𝓘 {X : Type u_1} [PseudoMetricSpace X] {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {f g : Θ X} (p : 𝔓 X) :
      dist_{c (𝓘 p) ,(defaultD a) ^ s (𝓘 p) / 4} f g = dist_{𝔠 p ,(defaultD a) ^ 𝔰 p / 4} f g
      @[simp]
      theorem nndist_𝓘 {X : Type u_1} [PseudoMetricSpace X] {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {f g : Θ X} (p : 𝔓 X) :
      nndist_{c (𝓘 p) ,(defaultD a) ^ s (𝓘 p) / 4} f g = nndist_{𝔠 p ,(defaultD a) ^ 𝔰 p / 4} f g
      @[simp]
      theorem ball_𝓘 {X : Type u_1} [PseudoMetricSpace X] {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {f : Θ X} (p : 𝔓 X) {r : } :
      ball_{c (𝓘 p) ,(defaultD a) ^ s (𝓘 p) / 4} f r = ball_{𝔠 p ,(defaultD a) ^ 𝔰 p / 4} f r
      @[simp]
      theorem cball_subset {X : Type u_1} [PseudoMetricSpace X] {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {p : 𝔓 X} :
      ball_{𝔠 p ,(defaultD a) ^ 𝔰 p / 4} (𝒬 p) 5⁻¹ Ω p
      @[simp]
      theorem subset_cball {X : Type u_1} [PseudoMetricSpace X] {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {p : 𝔓 X} :
      Ω p ball_{𝔠 p ,(defaultD a) ^ 𝔰 p / 4} (𝒬 p) 1
      theorem ball_eq_of_grid_eq {X : Type u_1} [PseudoMetricSpace X] {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {p q✝ : 𝔓 X} {ϑ : Θ X} {r : } (h : 𝓘 p = 𝓘 q✝) :
      ball_{𝔠 p ,(defaultD a) ^ 𝔰 p / 4} ϑ r = ball_{𝔠 q✝ ,(defaultD a) ^ 𝔰 q✝ / 4} ϑ r
      theorem cball_disjoint {X : Type u_1} [PseudoMetricSpace X] {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {p p' : 𝔓 X} (h : p p') (hp : 𝓘 p = 𝓘 p') :
      Disjoint (ball_{𝔠 p ,(defaultD a) ^ 𝔰 p / 4} (𝒬 p) 5⁻¹) (ball_{𝔠 p' ,(defaultD a) ^ 𝔰 p' / 4} (𝒬 p') 5⁻¹)
      def E {X : Type u_1} [PseudoMetricSpace X] {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] (p : 𝔓 X) :
      Set X

      The set E defined in Proposition 2.0.2.

      Equations
      theorem E_subset_𝓘 {X : Type u_1} [PseudoMetricSpace X] {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {p : 𝔓 X} :
      E p (𝓘 p)
      theorem Q_mem_Ω {X : Type u_1} [PseudoMetricSpace X] {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {p : 𝔓 X} {x : X} (hp : x E p) :
      Q x Ω p
      theorem measurableSet_E {X : Type u_1} [PseudoMetricSpace X] {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {p : 𝔓 X} :
      theorem volume_E_lt_top {X : Type u_1} [PseudoMetricSpace X] {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {p : 𝔓 X} :
      def carlesonOn {X : Type u_1} [PseudoMetricSpace X] {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] (p : 𝔓 X) (f : X) :
      X

      The operator T_𝔭 defined in Proposition 2.0.2, considered on the set F. It is the map T ∘ (1_F * ·) : f ↦ T (1_F * f), also denoted T1_F The operator T in Proposition 2.0.2 is therefore applied to (F := Set.univ).

      Equations
      • One or more equations did not get rendered due to their size.
      theorem measurable_carlesonOn {X : Type u_1} [PseudoMetricSpace X] {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {p : 𝔓 X} {f : X} (measf : Measurable f) :
      def carlesonSum {X : Type u_1} [PseudoMetricSpace X] {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] ( : Set (𝔓 X)) (f : X) (x : X) :

      The operator T_ℭ f defined at the bottom of Section 7.4. We will use this in other places of the formalization as well.

      Equations
      theorem measurable_carlesonSum {X : Type u_1} [PseudoMetricSpace X] {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] { : Set (𝔓 X)} {f : X} (measf : Measurable f) :
      theorem MeasureTheory.AEStronglyMeasurable.carlesonOn {X : Type u_1} [PseudoMetricSpace X] {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {p : 𝔓 X} {f : X} (hf : AEStronglyMeasurable f volume) :
      theorem MeasureTheory.AEStronglyMeasurable.carlesonSum {X : Type u_1} [PseudoMetricSpace X] {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] { : Set (𝔓 X)} {f : X} (hf : AEStronglyMeasurable f volume) :
      theorem carlesonOn_def' {X : Type u_1} [PseudoMetricSpace X] {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] (p : 𝔓 X) (f : X) :
      carlesonOn p f = (E p).indicator fun (x : X) => (y : X), Ks (𝔰 p) x y * f y * Complex.exp (Complex.I * (((Q x) y) - ((Q x) x)))
      theorem support_carlesonOn_subset_E {X : Type u_1} [PseudoMetricSpace X] {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {p : 𝔓 X} {f : X} :
      theorem support_carlesonSum_subset {X : Type u_1} [PseudoMetricSpace X] {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] { : Set (𝔓 X)} {f : X} :
      Function.support (carlesonSum f) p, (𝓘 p)
      theorem MeasureTheory.BoundedCompactSupport.carlesonOn {X : Type u_1} [PseudoMetricSpace X] {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {p : 𝔓 X} {f : X} (hf : BoundedCompactSupport f) :
      theorem MeasureTheory.BoundedCompactSupport.carlesonSum {X : Type u_1} [PseudoMetricSpace X] {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] { : Set (𝔓 X)} {f : X} (hf : BoundedCompactSupport f) :
      theorem carlesonSum_inter_add_inter_compl {X : Type u_1} [PseudoMetricSpace X] {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {f : X} {x : X} (A B : Set (𝔓 X)) :
      carlesonSum (A B) f x + carlesonSum (A B) f x = carlesonSum A f x
      theorem sum_carlesonSum_of_pairwiseDisjoint {X : Type u_1} [PseudoMetricSpace X] {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {ι : Type u_2} {f : X} {x : X} {A : ιSet (𝔓 X)} {s : Finset ι} (hs : (↑s).PairwiseDisjoint A) :
      is, carlesonSum (A i) f x = carlesonSum (⋃ is, A i) f x
      def TileLike (X : Type u_1) [PseudoMetricSpace X] {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] :
      Type u_1
      Equations
      Instances For
      def TileLike.fst {X : Type u_1} [PseudoMetricSpace X] {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] (x : TileLike X) :
      Equations
      def TileLike.snd {X : Type u_1} [PseudoMetricSpace X] {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] (x : TileLike X) :
      Set (Θ X)
      Equations
      @[simp]
      theorem TileLike.fst_mk {X : Type u_1} [PseudoMetricSpace X] {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] (x : Grid X) (y : Set (Θ X)) :
      fst (x, y) = x
      @[simp]
      theorem TileLike.snd_mk {X : Type u_1} [PseudoMetricSpace X] {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] (x : Grid X) (y : Set (Θ X)) :
      snd (x, y) = y
      instance instPartialOrderTileLike {X : Type u_1} [PseudoMetricSpace X] {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] :
      Equations
      theorem TileLike.le_def {X : Type u_1} [PseudoMetricSpace X] {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] (x y : TileLike X) :
      x y x.fst y.fst y.snd x.snd
      def toTileLike {X : Type u_1} [PseudoMetricSpace X] {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] (p : 𝔓 X) :
      Equations
      @[simp]
      theorem toTileLike_fst {X : Type u_1} [PseudoMetricSpace X] {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] (p : 𝔓 X) :
      @[simp]
      theorem toTileLike_snd {X : Type u_1} [PseudoMetricSpace X] {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] (p : 𝔓 X) :
      def smul {X : Type u_1} [PseudoMetricSpace X] {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] (l : ) (p : 𝔓 X) :

      This is not defined as such in the blueprint, but λp ≲ λ'p' can be written using smul l p ≤ smul l' p'. Beware: smul 1 p is very different from toTileLike p.

      Equations
      @[simp]
      theorem smul_fst {X : Type u_1} [PseudoMetricSpace X] {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] (l : ) (p : 𝔓 X) :
      (smul l p).fst = 𝓘 p
      @[simp]
      theorem smul_snd {X : Type u_1} [PseudoMetricSpace X] {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] (l : ) (p : 𝔓 X) :
      (smul l p).snd = ball_{𝔠 p ,(defaultD a) ^ 𝔰 p / 4} (𝒬 p) l
      theorem smul_mono_left {X : Type u_1} [PseudoMetricSpace X] {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {l l' : } {p : 𝔓 X} (h : l l') :
      smul l' p smul l p
      theorem smul_le_toTileLike {X : Type u_1} [PseudoMetricSpace X] {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {p : 𝔓 X} :
      theorem toTileLike_le_smul {X : Type u_1} [PseudoMetricSpace X] {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {p : 𝔓 X} :
      theorem 𝒬_mem_Ω {X : Type u_1} [PseudoMetricSpace X] {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {p : 𝔓 X} :
      𝒬 p Ω p
      theorem 𝒬_inj {X : Type u_1} [PseudoMetricSpace X] {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {p p' : 𝔓 X} (h : 𝒬 p = 𝒬 p') (h𝓘 : 𝓘 p = 𝓘 p') :
      p = p'
      theorem toTileLike_injective {X : Type u_1} [PseudoMetricSpace X] {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] :
      instance instPartialOrder𝔓Real {X : Type u_1} [PseudoMetricSpace X] {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] :
      Equations
      theorem 𝔓.le_def {X : Type u_1} [PseudoMetricSpace X] {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {p q✝ : 𝔓 X} :
      theorem 𝔓.le_def' {X : Type u_1} [PseudoMetricSpace X] {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {p q✝ : 𝔓 X} :
      p q✝ 𝓘 p 𝓘 q✝ Ω q✝ Ω p
      theorem tile_le_of_cube_le_and_not_disjoint {X : Type u_1} [PseudoMetricSpace X] {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {p q✝ : 𝔓 X} (hi : 𝓘 p 𝓘 q✝) {x : Θ X} (mxp : x Ω p) (mxq : x Ω q✝) :
      p q✝

      Deduce an inclusion of tiles from an inclusion of their cubes and non-disjointness of their Ωs.

      theorem dist_𝒬_lt_one_of_le {X : Type u_1} [PseudoMetricSpace X] {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {p q✝ : 𝔓 X} (h : p q✝) :
      dist_{𝔠 p ,(defaultD a) ^ 𝔰 p / 4} (𝒬 q✝) (𝒬 p) < 1
      theorem dist_𝒬_lt_one_of_le' {X : Type u_1} [PseudoMetricSpace X] {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {p q✝ : 𝔓 X} (h : p q✝) :
      dist_{𝔠 p ,(defaultD a) ^ 𝔰 p / 4} (𝒬 p) (𝒬 q✝) < 1
      theorem 𝓘_strictMono {X : Type u_1} [PseudoMetricSpace X] {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] :
      theorem smul_mono {X : Type u_1} [PseudoMetricSpace X] {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {p p' : 𝔓 X} {m m' n n' : } (hp : smul n p smul m p') (hm : m' m) (hn : n n') :
      smul n' p smul m' p'

      Lemma 5.3.1

      theorem smul_C2_1_2 {X : Type u_1} [PseudoMetricSpace X] {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {p p' : 𝔓 X} (m : ) {n k : } (hk : 0 < k) (hp : 𝓘 p 𝓘 p') (hl : smul n p smul k p') :
      smul (n + C2_1_2 a * m) p smul m p'

      Lemma 5.3.2 (generalizing 1 to k > 0)

      theorem dist_LTSeries {X : Type u_1} [PseudoMetricSpace X] {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {n : } {u : Set (𝔓 X)} {s : LTSeries u} (hs : s.length = n) {f g : Θ X} :
      def C5_3_3 (a : ) :

      The constraint on λ in the first part of Lemma 5.3.3.

      Equations
      theorem C5_3_3_le {X : Type u_1} [PseudoMetricSpace X] {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [ProofData a q K σ₁ σ₂ F G] :
      C5_3_3 a 11 / 10
      theorem wiggle_order_11_10 {X : Type u_1} [PseudoMetricSpace X] {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {p p' : 𝔓 X} {n : } (hp : p p') (hn : C5_3_3 a n) :
      smul n p smul n p'

      Lemma 5.3.3, Equation (5.3.3)

      theorem wiggle_order_100 {X : Type u_1} [PseudoMetricSpace X] {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {p p' : 𝔓 X} (hp : smul 10 p smul 1 p') (hn : 𝓘 p 𝓘 p') :
      smul 100 p smul 100 p'

      Lemma 5.3.3, Equation (5.3.4)

      theorem wiggle_order_500 {X : Type u_1} [PseudoMetricSpace X] {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {p p' : 𝔓 X} (hp : smul 2 p smul 1 p') (hn : 𝓘 p 𝓘 p') :
      smul 4 p smul 500 p'

      Lemma 5.3.3, Equation (5.3.5)

      def C5_3_2 (a : ) :
      Equations
      def TileLike.toTile {X : Type u_1} [PseudoMetricSpace X] {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] (t : TileLike X) :
      Set (X × Θ X)
      Equations
      def TileLike.toSet {X : Type u_1} [PseudoMetricSpace X] {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] (t : TileLike X) :
      Set X

      From a TileLike, we can construct a set. This is used in the definitions E₁ and E₂.

      Equations
      def E₁ {X : Type u_1} [PseudoMetricSpace X] {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] (p : 𝔓 X) :
      Set X
      Equations
      def E₂ {X : Type u_1} [PseudoMetricSpace X] {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] (l : ) (p : 𝔓 X) :
      Set X
      Equations
      theorem E₁_subset {X : Type u_1} [PseudoMetricSpace X] {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] (p : 𝔓 X) :
      E₁ p (𝓘 p)
      theorem E₂_subset {X : Type u_1} [PseudoMetricSpace X] {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] (l : ) (p : 𝔓 X) :
      E₂ l p (𝓘 p)
      theorem E₂_mono {X : Type u_1} [PseudoMetricSpace X] {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {p : 𝔓 X} :
      Monotone fun (l : ) => E₂ l p
      def lowerCubes {X : Type u_1} [PseudoMetricSpace X] {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] (𝔓' : Set (𝔓 X)) :
      Set (𝔓 X)

      𝔓(𝔓') in the blueprint. The set of all tiles whose cubes are less than the cube of some tile in the given set.

      Equations
      theorem mem_lowerCubes {X : Type u_1} [PseudoMetricSpace X] {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {p : 𝔓 X} {𝔓' : Set (𝔓 X)} :
      p lowerCubes 𝔓' p'𝔓', 𝓘 p 𝓘 p'
      theorem lowerCubes_mono {X : Type u_1} [PseudoMetricSpace X] {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] :
      theorem subset_lowerCubes {X : Type u_1} [PseudoMetricSpace X] {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {𝔓' : Set (𝔓 X)} :
      𝔓' lowerCubes 𝔓'
      def dens₁ {X : Type u_1} [PseudoMetricSpace X] {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] (𝔓' : Set (𝔓 X)) :

      This density is defined to live in ℝ≥0∞. Use ENNReal.toReal to get a real number.

      Equations
      • One or more equations did not get rendered due to their size.
      theorem dens₁_mono {X : Type u_1} [PseudoMetricSpace X] {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {𝔓₁ 𝔓₂ : Set (𝔓 X)} (h : 𝔓₁ 𝔓₂) :
      dens₁ 𝔓₁ dens₁ 𝔓₂
      def dens₂ {X : Type u_1} [PseudoMetricSpace X] {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] (𝔓' : Set (𝔓 X)) :

      This density is defined to live in ℝ≥0∞. Use ENNReal.toReal to get a real number.

      Equations
      theorem le_dens₂ {X : Type u_1} [PseudoMetricSpace X] {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] (𝔓' : Set (𝔓 X)) {p : 𝔓 X} (hp : p 𝔓') {r : } (hr : r 4 * (defaultD a) ^ 𝔰 p) :
      theorem dens₂_eq_biSup_dens₂ {X : Type u_1} [PseudoMetricSpace X] {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] (𝔓' : Set (𝔓 X)) :
      dens₂ 𝔓' = p𝔓', dens₂ {p}
      theorem isAntichain_iff_disjoint {X : Type u_1} [PseudoMetricSpace X] {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] (𝔄 : Set (𝔓 X)) :
      IsAntichain (fun (x1 x2 : TileLike X) => x1 x2) (toTileLike '' 𝔄) ∀ (p p' : 𝔓 X), p 𝔄p' 𝔄p p'Disjoint (toTileLike p).toTile (toTileLike p').toTile
      theorem ENNReal.rpow_le_rpow_of_nonpos {x y : ENNReal} {z : } (hz : z 0) (h : x y) :
      y ^ z x ^ z
      def dens₁_le_one {X : Type u_1} [PseudoMetricSpace X] {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {𝔓' : Set (𝔓 X)} :
      dens₁ 𝔓' 1
      Equations
      • =
      theorem volume_E₂_le_dens₁_mul_volume {X : Type u_1} [PseudoMetricSpace X] {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {p p' : 𝔓 X} {𝔓' : Set (𝔓 X)} (mp : p lowerCubes 𝔓') (mp' : p' 𝔓') {l : NNReal} (hl : 2 l) (sp : smul (↑l) p' smul (↑l) p) :

      Stack sizes #

      def stackSize {X : Type u_1} [PseudoMetricSpace X] {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] (C : Set (𝔓 X)) (x : X) :

      The number of tiles p in s whose underlying cube 𝓘 p contains x.

      Equations
      theorem stackSize_setOf_add_stackSize_setOf_not {X : Type u_1} [PseudoMetricSpace X] {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {C : Set (𝔓 X)} {x : X} {P : 𝔓 XProp} :
      stackSize {p : 𝔓 X | p C P p} x + stackSize {p : 𝔓 X | p C ¬P p} x = stackSize C x
      theorem stackSize_inter_add_stackSize_sdiff {X : Type u_1} [PseudoMetricSpace X] {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {C C' : Set (𝔓 X)} {x : X} :
      stackSize (C C') x + stackSize (C \ C') x = stackSize C x
      theorem stackSize_sdiff_eq {X : Type u_1} [PseudoMetricSpace X] {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {C C' : Set (𝔓 X)} (x : X) :
      stackSize (C \ C') x = stackSize C x - stackSize (C C') x
      theorem stackSize_congr {X : Type u_1} [PseudoMetricSpace X] {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {C : Set (𝔓 X)} {x x' : X} (h : pC, x (𝓘 p) x' (𝓘 p)) :
      theorem stackSize_mono {X : Type u_1} [PseudoMetricSpace X] {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {C C' : Set (𝔓 X)} {x : X} (h : C C') :
      theorem stackSize_real {X : Type u_1} [PseudoMetricSpace X] {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] (C : Set (𝔓 X)) (x : X) :
      (stackSize C x) = p{p : 𝔓 X | p C}, (↑(𝓘 p)).indicator 1 x
      theorem stackSize_measurable {X : Type u_1} [PseudoMetricSpace X] {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {C : Set (𝔓 X)} :
      Measurable fun (x : X) => (stackSize C x)
      theorem stackSize_le_one_of_pairwiseDisjoint {X : Type u_1} [PseudoMetricSpace X] {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {C : Set (𝔓 X)} {x : X} (h : C.PairwiseDisjoint fun (p : 𝔓 X) => (𝓘 p)) :
      theorem eq_empty_of_forall_stackSize_zero {X : Type u_1} [PseudoMetricSpace X] {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] (s : Set (𝔓 X)) :
      (∀ (x : X), stackSize s x = 0)s =

      Decomposing a set of tiles into disjoint subfamilies #

      theorem exists_maximal_disjoint_covering_subfamily {X : Type u_1} [PseudoMetricSpace X] {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] (A : Set (𝔓 X)) :
      ∃ (B : Set (𝔓 X)), (B.PairwiseDisjoint fun (p : 𝔓 X) => (𝓘 p)) B A a_1A, bB, (𝓘 a_1) (𝓘 b)

      Given any family of tiles, one can extract a maximal disjoint subfamily, covering everything.

      def maximalSubfamily {X : Type u_1} [PseudoMetricSpace X] {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] (A : Set (𝔓 X)) :
      Set (𝔓 X)

      A disjoint subfamily of A covering everything.

      Equations
      @[irreducible]
      def iteratedMaximalSubfamily {X : Type u_1} [PseudoMetricSpace X] {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] (A : Set (𝔓 X)) (n : ) :
      Set (𝔓 X)

      Iterating maximalSubfamily to obtain disjoint subfamilies of A.

      Equations
      theorem pairwiseDisjoint_iteratedMaximalSubfamily_image {X : Type u_1} [PseudoMetricSpace X] {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] (A : Set (𝔓 X)) (n : ) :
      theorem iteratedMaximalSubfamily_subset {X : Type u_1} [PseudoMetricSpace X] {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] (A : Set (𝔓 X)) (n : ) :
      theorem pairwiseDisjoint_iteratedMaximalSubfamily {X : Type u_1} [PseudoMetricSpace X] {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] (A : Set (𝔓 X)) :
      theorem eq_biUnion_iteratedMaximalSubfamily {X : Type u_1} [PseudoMetricSpace X] {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] (A : Set (𝔓 X)) {N : } (hN : ∀ (x : X), stackSize A x N) :
      A = ⋃ (n : ), ⋃ (_ : n < N), iteratedMaximalSubfamily A n

      Any set of tiles can be written as the union of disjoint subfamilies, their number being controlled by the maximal stack size.