- coeGrid : GridStructure.Grid X โ Set X
- s : GridStructure.Grid X โ โค
- c : GridStructure.Grid X โ X
- inj : Function.Injective fun (i : GridStructure.Grid X) => (โi, s i)
- fundamental_dyadic' {i j : GridStructure.Grid X} : s i โค s j โ โi โ โj โจ Disjoint โi โj
- ๐ : Type u
- fintype_๐ : Fintype (PreTileStructure.๐ ๐ X)
- ๐ : PreTileStructure.๐ ๐ X โ GridStructure.Grid X
- surjective_๐ : Function.Surjective PreTileStructure.๐
- ๐ฌ : PreTileStructure.๐ ๐ X โ ฮ X
Instances
Equations
- ๐ X = PreTileStructure.๐ ๐ X
Instances For
Equations
Instances For
Equations
- instInhabited๐ = { default := โฏ.choose }
Instances For
Instances For
A tile structure.
- coeGrid : GridStructure.Grid X โ Set X
- s : GridStructure.Grid X โ โค
- c : GridStructure.Grid X โ X
- inj : Function.Injective fun (i : GridStructure.Grid X) => (โi, s i)
- fundamental_dyadic' {i j : GridStructure.Grid X} : s i โค s j โ โi โ โj โจ Disjoint โi โj
- ๐ : PreTileStructure.๐ โ X โ GridStructure.Grid X
- ๐ฌ : PreTileStructure.๐ โ X โ ฮ X
- ฮฉ : PreTileStructure.๐ โ X โ Set (ฮ X)
- biUnion_ฮฉ {i : GridStructure.Grid X} : Set.range โQ โ โ p โ PreTileStructure.๐ โปยน' {i}, ฮฉ p
- disjoint_ฮฉ {p p' : PreTileStructure.๐ โ X} (h : p โ p') (hp : PreTileStructure.๐ p = PreTileStructure.๐ p') : Disjoint (ฮฉ p) (ฮฉ p')
- relative_fundamental_dyadic {p p' : PreTileStructure.๐ โ X} (h : PreTileStructure.๐ p โค PreTileStructure.๐ p') : Disjoint (ฮฉ p) (ฮฉ p') โจ ฮฉ p' โ ฮฉ p
Instances
Equations
- One or more equations did not get rendered due to their size.
Instances For
Equations
- One or more equations did not get rendered due to their size.
Instances For
Equations
- One or more equations did not get rendered due to their size.
Instances For
Equations
- One or more equations did not get rendered due to their size.
Instances For
A bound used in both nontrivial cases of Lemma 7.5.5.
A bound used in Lemma 7.6.2.
The set E defined in Proposition 2.0.2.
Instances For
Equations
This is not defined as such in the blueprint, but ฮปp โฒ ฮป'p' can be written using
smul l p โค smul l' p'.
Beware: smul 1 p is very different from toTileLike p.
Instances For
Equations
Deduce an inclusion of tiles from an inclusion of their cubes and
non-disjointness of their ฮฉs.
Lemma 5.3.1
Lemma 5.3.2 (generalizing 1 to k > 0)
Lemma 5.3.3, Equation (5.3.3)
Lemma 5.3.3, Equation (5.3.4)
Lemma 5.3.3, Equation (5.3.5)
From a TileLike, we can construct a set. This is used in the definitions Eโ and Eโ.
Instances For
Equations
- Eโ p = (toTileLike p).toSet
Instances For
๐(๐') in the blueprint.
The set of all tiles whose cubes are less than the cube of some tile in the given set.
Instances For
This density is defined to live in โโฅ0โ. Use ENNReal.toReal to get a real number.
Equations
- One or more equations did not get rendered due to their size.
Instances For
This density is defined to live in โโฅ0โ. Use ENNReal.toReal to get a real number.
Equations
- densโ ๐' = โจ p โ ๐', โจ (r : โ), โจ (_ : r โฅ 4 * โ(defaultD a) ^ ๐ฐ p), MeasureTheory.volume (F โฉ Metric.ball (๐ p) r) / MeasureTheory.volume (Metric.ball (๐ p) r)
Instances For
Stack sizes #
The number of tiles p in s whose underlying cube ๐ p contains x.
Instances For
Decomposing a set of tiles into disjoint subfamilies #
Given any family of tiles, one can extract a maximal disjoint subfamily, covering everything.
A disjoint subfamily of A covering everything.
Equations
- maximalSubfamily A = โฏ.choose
Instances For
Iterating maximalSubfamily to obtain disjoint subfamilies of A.
Equations
- iteratedMaximalSubfamily A n = maximalSubfamily (A \ โ (i : โ{i : โ | i < n}), have this := โฏ; iteratedMaximalSubfamily A โi)
Instances For
Any set of tiles can be written as the union of disjoint subfamilies, their number being controlled by the maximal stack size.