Documentation

Carleson.TileStructure

class PreTileStructure {๐•œ : Type u_1} [RCLike ๐•œ] {X : Type u} {A : outParam NNReal} [PseudoMetricSpace X] [MeasureTheory.DoublingMeasure X A] [FunctionDistances ๐•œ X] (Q : outParam (MeasureTheory.SimpleFunc X (ฮ˜ X))) (D : outParam โ„•) (ฮบ : outParam โ„) (S : outParam โ„•) (o : outParam X) extends GridStructure X D ฮบ S o :
Type (max (u + 1) (u_2 + 1))
Instances
    def ๐”“ {๐•œ : Type u_1} [RCLike ๐•œ] (X : Type u) {A : NNReal} [PseudoMetricSpace X] [MeasureTheory.DoublingMeasure X A] {D : โ„•} {ฮบ : โ„} {S : โ„•} {o : X} [FunctionDistances ๐•œ X] {Q : MeasureTheory.SimpleFunc X (ฮ˜ X)} [PreTileStructure Q D ฮบ S o] :
    Equations
    Instances For
      instance instFintype๐”“ {๐•œ : Type u_1} [RCLike ๐•œ] {X : Type u} {A : NNReal} [PseudoMetricSpace X] [MeasureTheory.DoublingMeasure X A] {D : โ„•} {ฮบ : โ„} {S : โ„•} {o : X} [FunctionDistances ๐•œ X] {Q : MeasureTheory.SimpleFunc X (ฮ˜ X)} [PreTileStructure Q D ฮบ S o] :
      Equations
      def ๐“˜ {๐•œ : Type u_1} [RCLike ๐•œ] {X : Type u} {A : NNReal} [PseudoMetricSpace X] [MeasureTheory.DoublingMeasure X A] {D : โ„•} {ฮบ : โ„} {S : โ„•} {o : X} [FunctionDistances ๐•œ X] {Q : MeasureTheory.SimpleFunc X (ฮ˜ X)} [PreTileStructure Q D ฮบ S o] :
      ๐”“ X โ†’ Grid X
      Equations
      Instances For
        theorem surjective_๐“˜ {๐•œ : Type u_1} [RCLike ๐•œ] {X : Type u} {A : NNReal} [PseudoMetricSpace X] [MeasureTheory.DoublingMeasure X A] {D : โ„•} {ฮบ : โ„} {S : โ„•} {o : X} [FunctionDistances ๐•œ X] {Q : MeasureTheory.SimpleFunc X (ฮ˜ X)} [PreTileStructure Q D ฮบ S o] :
        instance instInhabited๐”“ {๐•œ : Type u_1} [RCLike ๐•œ] {X : Type u} {A : NNReal} [PseudoMetricSpace X] [MeasureTheory.DoublingMeasure X A] {D : โ„•} {ฮบ : โ„} {S : โ„•} {o : X} [FunctionDistances ๐•œ X] {Q : MeasureTheory.SimpleFunc X (ฮ˜ X)} [PreTileStructure Q D ฮบ S o] :
        Equations
        def ๐”  {๐•œ : Type u_1} [RCLike ๐•œ] {X : Type u} {A : NNReal} [PseudoMetricSpace X] [MeasureTheory.DoublingMeasure X A] {D : โ„•} {ฮบ : โ„} {S : โ„•} {o : X} [FunctionDistances ๐•œ X] {Q : MeasureTheory.SimpleFunc X (ฮ˜ X)} [PreTileStructure Q D ฮบ S o] (p : ๐”“ X) :
        X
        Equations
        Instances For
          def ๐”ฐ {๐•œ : Type u_1} [RCLike ๐•œ] {X : Type u} {A : NNReal} [PseudoMetricSpace X] [MeasureTheory.DoublingMeasure X A] {D : โ„•} {ฮบ : โ„} {S : โ„•} {o : X} [FunctionDistances ๐•œ X] {Q : MeasureTheory.SimpleFunc X (ฮ˜ X)} [PreTileStructure Q D ฮบ S o] (p : ๐”“ X) :
          Equations
          Instances For

            A tile structure.

            Instances
              Equations
              • One or more equations did not get rendered due to their size.
              Instances For
                Equations
                • One or more equations did not get rendered due to their size.
                Instances For
                  Equations
                  • One or more equations did not get rendered due to their size.
                  Instances For
                    Equations
                    • One or more equations did not get rendered due to their size.
                    Instances For
                      @[simp]
                      theorem dist_๐“˜ {X : Type u_1} [PseudoMetricSpace X] {a : โ„•} {q : โ„} {K : X โ†’ X โ†’ โ„‚} {ฯƒโ‚ ฯƒโ‚‚ : X โ†’ โ„ค} {F G : Set X} [ProofData a q K ฯƒโ‚ ฯƒโ‚‚ F G] [TileStructure Q (defaultD a) (defaultฮบ a) (defaultS X) (cancelPt X)] {f g : ฮ˜ X} (p : ๐”“ X) :
                      dist_{c (๐“˜ p), โ†‘(defaultD a) ^ s (๐“˜ p) / 4} f g = dist_{๐”  p, โ†‘(defaultD a) ^ ๐”ฐ p / 4} f g
                      @[simp]
                      theorem nndist_๐“˜ {X : Type u_1} [PseudoMetricSpace X] {a : โ„•} {q : โ„} {K : X โ†’ X โ†’ โ„‚} {ฯƒโ‚ ฯƒโ‚‚ : X โ†’ โ„ค} {F G : Set X} [ProofData a q K ฯƒโ‚ ฯƒโ‚‚ F G] [TileStructure Q (defaultD a) (defaultฮบ a) (defaultS X) (cancelPt X)] {f g : ฮ˜ X} (p : ๐”“ X) :
                      nndist_{c (๐“˜ p), โ†‘(defaultD a) ^ s (๐“˜ p) / 4} f g = nndist_{๐”  p, โ†‘(defaultD a) ^ ๐”ฐ p / 4} f g
                      @[simp]
                      theorem ball_๐“˜ {X : Type u_1} [PseudoMetricSpace X] {a : โ„•} {q : โ„} {K : X โ†’ X โ†’ โ„‚} {ฯƒโ‚ ฯƒโ‚‚ : X โ†’ โ„ค} {F G : Set X} [ProofData a q K ฯƒโ‚ ฯƒโ‚‚ F G] [TileStructure Q (defaultD a) (defaultฮบ a) (defaultS X) (cancelPt X)] {f : ฮ˜ X} (p : ๐”“ X) {r : โ„} :
                      ball_{c (๐“˜ p), โ†‘(defaultD a) ^ s (๐“˜ p) / 4} f r = ball_{๐”  p, โ†‘(defaultD a) ^ ๐”ฐ p / 4} f r
                      @[simp]
                      theorem cball_subset {X : Type u_1} [PseudoMetricSpace X] {a : โ„•} {q : โ„} {K : X โ†’ X โ†’ โ„‚} {ฯƒโ‚ ฯƒโ‚‚ : X โ†’ โ„ค} {F G : Set X} [ProofData a q K ฯƒโ‚ ฯƒโ‚‚ F G] [TileStructure Q (defaultD a) (defaultฮบ a) (defaultS X) (cancelPt X)] {p : ๐”“ X} :
                      @[simp]
                      theorem subset_cball {X : Type u_1} [PseudoMetricSpace X] {a : โ„•} {q : โ„} {K : X โ†’ X โ†’ โ„‚} {ฯƒโ‚ ฯƒโ‚‚ : X โ†’ โ„ค} {F G : Set X} [ProofData a q K ฯƒโ‚ ฯƒโ‚‚ F G] [TileStructure Q (defaultD a) (defaultฮบ a) (defaultS X) (cancelPt X)] {p : ๐”“ X} :
                      theorem ball_eq_of_grid_eq {X : Type u_1} [PseudoMetricSpace X] {a : โ„•} {q : โ„} {K : X โ†’ X โ†’ โ„‚} {ฯƒโ‚ ฯƒโ‚‚ : X โ†’ โ„ค} {F G : Set X} [ProofData a q K ฯƒโ‚ ฯƒโ‚‚ F G] [TileStructure Q (defaultD a) (defaultฮบ a) (defaultS X) (cancelPt X)] {p qโœ : ๐”“ X} {ฯ‘ : ฮ˜ X} {r : โ„} (h : ๐“˜ p = ๐“˜ qโœ) :
                      ball_{๐”  p, โ†‘(defaultD a) ^ ๐”ฐ p / 4} ฯ‘ r = ball_{๐”  qโœ, โ†‘(defaultD a) ^ ๐”ฐ qโœ / 4} ฯ‘ r
                      theorem cball_disjoint {X : Type u_1} [PseudoMetricSpace X] {a : โ„•} {q : โ„} {K : X โ†’ X โ†’ โ„‚} {ฯƒโ‚ ฯƒโ‚‚ : X โ†’ โ„ค} {F G : Set X} [ProofData a q K ฯƒโ‚ ฯƒโ‚‚ F G] [TileStructure Q (defaultD a) (defaultฮบ a) (defaultS X) (cancelPt X)] {p p' : ๐”“ X} (h : p โ‰  p') (hp : ๐“˜ p = ๐“˜ p') :
                      theorem volume_xDsp_bound {X : Type u_1} [PseudoMetricSpace X] {a : โ„•} {q : โ„} {K : X โ†’ X โ†’ โ„‚} {ฯƒโ‚ ฯƒโ‚‚ : X โ†’ โ„ค} {F G : Set X} [ProofData a q K ฯƒโ‚ ฯƒโ‚‚ F G] [TileStructure Q (defaultD a) (defaultฮบ a) (defaultS X) (cancelPt X)] {p : ๐”“ X} {x : X} (hx : x โˆˆ ๐“˜ p) :

                      A bound used in both nontrivial cases of Lemma 7.5.5.

                      theorem volume_xDsp_bound_4 {X : Type u_1} [PseudoMetricSpace X] {a : โ„•} {q : โ„} {K : X โ†’ X โ†’ โ„‚} {ฯƒโ‚ ฯƒโ‚‚ : X โ†’ โ„ค} {F G : Set X} [ProofData a q K ฯƒโ‚ ฯƒโ‚‚ F G] [TileStructure Q (defaultD a) (defaultฮบ a) (defaultS X) (cancelPt X)] {p : ๐”“ X} {x : X} (hx : x โˆˆ ๐“˜ p) :

                      A bound used in Lemma 7.6.2.

                      def E {X : Type u_1} [PseudoMetricSpace X] {a : โ„•} {q : โ„} {K : X โ†’ X โ†’ โ„‚} {ฯƒโ‚ ฯƒโ‚‚ : X โ†’ โ„ค} {F G : Set X} [ProofData a q K ฯƒโ‚ ฯƒโ‚‚ F G] [TileStructure Q (defaultD a) (defaultฮบ a) (defaultS X) (cancelPt X)] (p : ๐”“ X) :
                      Set X

                      The set E defined in Proposition 2.0.2.

                      Equations
                      Instances For
                        theorem E_subset_๐“˜ {X : Type u_1} [PseudoMetricSpace X] {a : โ„•} {q : โ„} {K : X โ†’ X โ†’ โ„‚} {ฯƒโ‚ ฯƒโ‚‚ : X โ†’ โ„ค} {F G : Set X} [ProofData a q K ฯƒโ‚ ฯƒโ‚‚ F G] [TileStructure Q (defaultD a) (defaultฮบ a) (defaultS X) (cancelPt X)] {p : ๐”“ X} :
                        E p โІ โ†‘(๐“˜ p)
                        theorem Q_mem_ฮฉ {X : Type u_1} [PseudoMetricSpace X] {a : โ„•} {q : โ„} {K : X โ†’ X โ†’ โ„‚} {ฯƒโ‚ ฯƒโ‚‚ : X โ†’ โ„ค} {F G : Set X} [ProofData a q K ฯƒโ‚ ฯƒโ‚‚ F G] [TileStructure Q (defaultD a) (defaultฮบ a) (defaultS X) (cancelPt X)] {p : ๐”“ X} {x : X} (hp : x โˆˆ E p) :
                        theorem disjoint_E {X : Type u_1} [PseudoMetricSpace X] {a : โ„•} {q : โ„} {K : X โ†’ X โ†’ โ„‚} {ฯƒโ‚ ฯƒโ‚‚ : X โ†’ โ„ค} {F G : Set X} [ProofData a q K ฯƒโ‚ ฯƒโ‚‚ F G] [TileStructure Q (defaultD a) (defaultฮบ a) (defaultS X) (cancelPt X)] {p p' : ๐”“ X} (h : p โ‰  p') (hp : ๐“˜ p = ๐“˜ p') :
                        Disjoint (E p) (E p')
                        theorem measurableSet_E {X : Type u_1} [PseudoMetricSpace X] {a : โ„•} {q : โ„} {K : X โ†’ X โ†’ โ„‚} {ฯƒโ‚ ฯƒโ‚‚ : X โ†’ โ„ค} {F G : Set X} [ProofData a q K ฯƒโ‚ ฯƒโ‚‚ F G] [TileStructure Q (defaultD a) (defaultฮบ a) (defaultS X) (cancelPt X)] {p : ๐”“ X} :
                        theorem volume_E_lt_top {X : Type u_1} [PseudoMetricSpace X] {a : โ„•} {q : โ„} {K : X โ†’ X โ†’ โ„‚} {ฯƒโ‚ ฯƒโ‚‚ : X โ†’ โ„ค} {F G : Set X} [ProofData a q K ฯƒโ‚ ฯƒโ‚‚ F G] [TileStructure Q (defaultD a) (defaultฮบ a) (defaultS X) (cancelPt X)] {p : ๐”“ X} :
                        def TileLike (X : Type u_1) [PseudoMetricSpace X] {a : โ„•} {q : โ„} {K : X โ†’ X โ†’ โ„‚} {ฯƒโ‚ ฯƒโ‚‚ : X โ†’ โ„ค} {F G : Set X} [ProofData a q K ฯƒโ‚ ฯƒโ‚‚ F G] [TileStructure Q (defaultD a) (defaultฮบ a) (defaultS X) (cancelPt X)] :
                        Type u_1
                        Equations
                        Instances For
                          def TileLike.fst {X : Type u_1} [PseudoMetricSpace X] {a : โ„•} {q : โ„} {K : X โ†’ X โ†’ โ„‚} {ฯƒโ‚ ฯƒโ‚‚ : X โ†’ โ„ค} {F G : Set X} [ProofData a q K ฯƒโ‚ ฯƒโ‚‚ F G] [TileStructure Q (defaultD a) (defaultฮบ a) (defaultS X) (cancelPt X)] (x : TileLike X) :
                          Equations
                          Instances For
                            def TileLike.snd {X : Type u_1} [PseudoMetricSpace X] {a : โ„•} {q : โ„} {K : X โ†’ X โ†’ โ„‚} {ฯƒโ‚ ฯƒโ‚‚ : X โ†’ โ„ค} {F G : Set X} [ProofData a q K ฯƒโ‚ ฯƒโ‚‚ F G] [TileStructure Q (defaultD a) (defaultฮบ a) (defaultS X) (cancelPt X)] (x : TileLike X) :
                            Equations
                            Instances For
                              @[simp]
                              theorem TileLike.fst_mk {X : Type u_1} [PseudoMetricSpace X] {a : โ„•} {q : โ„} {K : X โ†’ X โ†’ โ„‚} {ฯƒโ‚ ฯƒโ‚‚ : X โ†’ โ„ค} {F G : Set X} [ProofData a q K ฯƒโ‚ ฯƒโ‚‚ F G] [TileStructure Q (defaultD a) (defaultฮบ a) (defaultS X) (cancelPt X)] (x : Grid X) (y : Set (ฮ˜ X)) :
                              fst (x, y) = x
                              @[simp]
                              theorem TileLike.snd_mk {X : Type u_1} [PseudoMetricSpace X] {a : โ„•} {q : โ„} {K : X โ†’ X โ†’ โ„‚} {ฯƒโ‚ ฯƒโ‚‚ : X โ†’ โ„ค} {F G : Set X} [ProofData a q K ฯƒโ‚ ฯƒโ‚‚ F G] [TileStructure Q (defaultD a) (defaultฮบ a) (defaultS X) (cancelPt X)] (x : Grid X) (y : Set (ฮ˜ X)) :
                              snd (x, y) = y
                              instance instPartialOrderTileLike {X : Type u_1} [PseudoMetricSpace X] {a : โ„•} {q : โ„} {K : X โ†’ X โ†’ โ„‚} {ฯƒโ‚ ฯƒโ‚‚ : X โ†’ โ„ค} {F G : Set X} [ProofData a q K ฯƒโ‚ ฯƒโ‚‚ F G] [TileStructure Q (defaultD a) (defaultฮบ a) (defaultS X) (cancelPt X)] :
                              Equations
                              theorem TileLike.le_def {X : Type u_1} [PseudoMetricSpace X] {a : โ„•} {q : โ„} {K : X โ†’ X โ†’ โ„‚} {ฯƒโ‚ ฯƒโ‚‚ : X โ†’ โ„ค} {F G : Set X} [ProofData a q K ฯƒโ‚ ฯƒโ‚‚ F G] [TileStructure Q (defaultD a) (defaultฮบ a) (defaultS X) (cancelPt X)] (x y : TileLike X) :
                              def toTileLike {X : Type u_1} [PseudoMetricSpace X] {a : โ„•} {q : โ„} {K : X โ†’ X โ†’ โ„‚} {ฯƒโ‚ ฯƒโ‚‚ : X โ†’ โ„ค} {F G : Set X} [ProofData a q K ฯƒโ‚ ฯƒโ‚‚ F G] [TileStructure Q (defaultD a) (defaultฮบ a) (defaultS X) (cancelPt X)] (p : ๐”“ X) :
                              Equations
                              Instances For
                                @[simp]
                                theorem toTileLike_fst {X : Type u_1} [PseudoMetricSpace X] {a : โ„•} {q : โ„} {K : X โ†’ X โ†’ โ„‚} {ฯƒโ‚ ฯƒโ‚‚ : X โ†’ โ„ค} {F G : Set X} [ProofData a q K ฯƒโ‚ ฯƒโ‚‚ F G] [TileStructure Q (defaultD a) (defaultฮบ a) (defaultS X) (cancelPt X)] (p : ๐”“ X) :
                                @[simp]
                                theorem toTileLike_snd {X : Type u_1} [PseudoMetricSpace X] {a : โ„•} {q : โ„} {K : X โ†’ X โ†’ โ„‚} {ฯƒโ‚ ฯƒโ‚‚ : X โ†’ โ„ค} {F G : Set X} [ProofData a q K ฯƒโ‚ ฯƒโ‚‚ F G] [TileStructure Q (defaultD a) (defaultฮบ a) (defaultS X) (cancelPt X)] (p : ๐”“ X) :
                                def smul {X : Type u_1} [PseudoMetricSpace X] {a : โ„•} {q : โ„} {K : X โ†’ X โ†’ โ„‚} {ฯƒโ‚ ฯƒโ‚‚ : X โ†’ โ„ค} {F G : Set X} [ProofData a q K ฯƒโ‚ ฯƒโ‚‚ F G] [TileStructure Q (defaultD a) (defaultฮบ a) (defaultS X) (cancelPt X)] (l : โ„) (p : ๐”“ X) :

                                This is not defined as such in the blueprint, but ฮปp โ‰ฒ ฮป'p' can be written using smul l p โ‰ค smul l' p'. Beware: smul 1 p is very different from toTileLike p.

                                Equations
                                Instances For
                                  @[simp]
                                  theorem smul_fst {X : Type u_1} [PseudoMetricSpace X] {a : โ„•} {q : โ„} {K : X โ†’ X โ†’ โ„‚} {ฯƒโ‚ ฯƒโ‚‚ : X โ†’ โ„ค} {F G : Set X} [ProofData a q K ฯƒโ‚ ฯƒโ‚‚ F G] [TileStructure Q (defaultD a) (defaultฮบ a) (defaultS X) (cancelPt X)] (l : โ„) (p : ๐”“ X) :
                                  @[simp]
                                  theorem smul_snd {X : Type u_1} [PseudoMetricSpace X] {a : โ„•} {q : โ„} {K : X โ†’ X โ†’ โ„‚} {ฯƒโ‚ ฯƒโ‚‚ : X โ†’ โ„ค} {F G : Set X} [ProofData a q K ฯƒโ‚ ฯƒโ‚‚ F G] [TileStructure Q (defaultD a) (defaultฮบ a) (defaultS X) (cancelPt X)] (l : โ„) (p : ๐”“ X) :
                                  (smul l p).snd = ball_{๐”  p, โ†‘(defaultD a) ^ ๐”ฐ p / 4} (๐’ฌ p) l
                                  theorem smul_mono_left {X : Type u_1} [PseudoMetricSpace X] {a : โ„•} {q : โ„} {K : X โ†’ X โ†’ โ„‚} {ฯƒโ‚ ฯƒโ‚‚ : X โ†’ โ„ค} {F G : Set X} [ProofData a q K ฯƒโ‚ ฯƒโ‚‚ F G] [TileStructure Q (defaultD a) (defaultฮบ a) (defaultS X) (cancelPt X)] {l l' : โ„} {p : ๐”“ X} (h : l โ‰ค l') :
                                  smul l' p โ‰ค smul l p
                                  theorem smul_le_toTileLike {X : Type u_1} [PseudoMetricSpace X] {a : โ„•} {q : โ„} {K : X โ†’ X โ†’ โ„‚} {ฯƒโ‚ ฯƒโ‚‚ : X โ†’ โ„ค} {F G : Set X} [ProofData a q K ฯƒโ‚ ฯƒโ‚‚ F G] [TileStructure Q (defaultD a) (defaultฮบ a) (defaultS X) (cancelPt X)] {p : ๐”“ X} :
                                  theorem toTileLike_le_smul {X : Type u_1} [PseudoMetricSpace X] {a : โ„•} {q : โ„} {K : X โ†’ X โ†’ โ„‚} {ฯƒโ‚ ฯƒโ‚‚ : X โ†’ โ„ค} {F G : Set X} [ProofData a q K ฯƒโ‚ ฯƒโ‚‚ F G] [TileStructure Q (defaultD a) (defaultฮบ a) (defaultS X) (cancelPt X)] {p : ๐”“ X} :
                                  theorem ๐’ฌ_mem_ฮฉ {X : Type u_1} [PseudoMetricSpace X] {a : โ„•} {q : โ„} {K : X โ†’ X โ†’ โ„‚} {ฯƒโ‚ ฯƒโ‚‚ : X โ†’ โ„ค} {F G : Set X} [ProofData a q K ฯƒโ‚ ฯƒโ‚‚ F G] [TileStructure Q (defaultD a) (defaultฮบ a) (defaultS X) (cancelPt X)] {p : ๐”“ X} :
                                  theorem ๐’ฌ_inj {X : Type u_1} [PseudoMetricSpace X] {a : โ„•} {q : โ„} {K : X โ†’ X โ†’ โ„‚} {ฯƒโ‚ ฯƒโ‚‚ : X โ†’ โ„ค} {F G : Set X} [ProofData a q K ฯƒโ‚ ฯƒโ‚‚ F G] [TileStructure Q (defaultD a) (defaultฮบ a) (defaultS X) (cancelPt X)] {p p' : ๐”“ X} (h : ๐’ฌ p = ๐’ฌ p') (h๐“˜ : ๐“˜ p = ๐“˜ p') :
                                  p = p'
                                  theorem toTileLike_injective {X : Type u_1} [PseudoMetricSpace X] {a : โ„•} {q : โ„} {K : X โ†’ X โ†’ โ„‚} {ฯƒโ‚ ฯƒโ‚‚ : X โ†’ โ„ค} {F G : Set X} [ProofData a q K ฯƒโ‚ ฯƒโ‚‚ F G] [TileStructure Q (defaultD a) (defaultฮบ a) (defaultS X) (cancelPt X)] :
                                  instance instPartialOrder๐”“Real {X : Type u_1} [PseudoMetricSpace X] {a : โ„•} {q : โ„} {K : X โ†’ X โ†’ โ„‚} {ฯƒโ‚ ฯƒโ‚‚ : X โ†’ โ„ค} {F G : Set X} [ProofData a q K ฯƒโ‚ ฯƒโ‚‚ F G] [TileStructure Q (defaultD a) (defaultฮบ a) (defaultS X) (cancelPt X)] :
                                  Equations
                                  theorem ๐”“.le_def {X : Type u_1} [PseudoMetricSpace X] {a : โ„•} {q : โ„} {K : X โ†’ X โ†’ โ„‚} {ฯƒโ‚ ฯƒโ‚‚ : X โ†’ โ„ค} {F G : Set X} [ProofData a q K ฯƒโ‚ ฯƒโ‚‚ F G] [TileStructure Q (defaultD a) (defaultฮบ a) (defaultS X) (cancelPt X)] {p qโœ : ๐”“ X} :
                                  theorem ๐”“.le_def' {X : Type u_1} [PseudoMetricSpace X] {a : โ„•} {q : โ„} {K : X โ†’ X โ†’ โ„‚} {ฯƒโ‚ ฯƒโ‚‚ : X โ†’ โ„ค} {F G : Set X} [ProofData a q K ฯƒโ‚ ฯƒโ‚‚ F G] [TileStructure Q (defaultD a) (defaultฮบ a) (defaultS X) (cancelPt X)] {p qโœ : ๐”“ X} :
                                  theorem tile_le_of_cube_le_and_not_disjoint {X : Type u_1} [PseudoMetricSpace X] {a : โ„•} {q : โ„} {K : X โ†’ X โ†’ โ„‚} {ฯƒโ‚ ฯƒโ‚‚ : X โ†’ โ„ค} {F G : Set X} [ProofData a q K ฯƒโ‚ ฯƒโ‚‚ F G] [TileStructure Q (defaultD a) (defaultฮบ a) (defaultS X) (cancelPt X)] {p qโœ : ๐”“ X} (hi : ๐“˜ p โ‰ค ๐“˜ qโœ) {x : ฮ˜ X} (mxp : x โˆˆ ฮฉ p) (mxq : x โˆˆ ฮฉ qโœ) :
                                  p โ‰ค qโœ

                                  Deduce an inclusion of tiles from an inclusion of their cubes and non-disjointness of their ฮฉs.

                                  theorem dist_๐’ฌ_lt_one_of_le {X : Type u_1} [PseudoMetricSpace X] {a : โ„•} {q : โ„} {K : X โ†’ X โ†’ โ„‚} {ฯƒโ‚ ฯƒโ‚‚ : X โ†’ โ„ค} {F G : Set X} [ProofData a q K ฯƒโ‚ ฯƒโ‚‚ F G] [TileStructure Q (defaultD a) (defaultฮบ a) (defaultS X) (cancelPt X)] {p qโœ : ๐”“ X} (h : p โ‰ค qโœ) :
                                  dist_{๐”  p, โ†‘(defaultD a) ^ ๐”ฐ p / 4} (๐’ฌ qโœ) (๐’ฌ p) < 1
                                  theorem dist_๐’ฌ_lt_one_of_le' {X : Type u_1} [PseudoMetricSpace X] {a : โ„•} {q : โ„} {K : X โ†’ X โ†’ โ„‚} {ฯƒโ‚ ฯƒโ‚‚ : X โ†’ โ„ค} {F G : Set X} [ProofData a q K ฯƒโ‚ ฯƒโ‚‚ F G] [TileStructure Q (defaultD a) (defaultฮบ a) (defaultS X) (cancelPt X)] {p qโœ : ๐”“ X} (h : p โ‰ค qโœ) :
                                  dist_{๐”  p, โ†‘(defaultD a) ^ ๐”ฐ p / 4} (๐’ฌ p) (๐’ฌ qโœ) < 1
                                  theorem ๐“˜_strictMono {X : Type u_1} [PseudoMetricSpace X] {a : โ„•} {q : โ„} {K : X โ†’ X โ†’ โ„‚} {ฯƒโ‚ ฯƒโ‚‚ : X โ†’ โ„ค} {F G : Set X} [ProofData a q K ฯƒโ‚ ฯƒโ‚‚ F G] [TileStructure Q (defaultD a) (defaultฮบ a) (defaultS X) (cancelPt X)] :
                                  theorem smul_mono {X : Type u_1} [PseudoMetricSpace X] {a : โ„•} {q : โ„} {K : X โ†’ X โ†’ โ„‚} {ฯƒโ‚ ฯƒโ‚‚ : X โ†’ โ„ค} {F G : Set X} [ProofData a q K ฯƒโ‚ ฯƒโ‚‚ F G] [TileStructure Q (defaultD a) (defaultฮบ a) (defaultS X) (cancelPt X)] {p p' : ๐”“ X} {m m' n n' : โ„} (hp : smul n p โ‰ค smul m p') (hm : m' โ‰ค m) (hn : n โ‰ค n') :
                                  smul n' p โ‰ค smul m' p'

                                  Lemma 5.3.1

                                  theorem smul_C2_1_2 {X : Type u_1} [PseudoMetricSpace X] {a : โ„•} {q : โ„} {K : X โ†’ X โ†’ โ„‚} {ฯƒโ‚ ฯƒโ‚‚ : X โ†’ โ„ค} {F G : Set X} [ProofData a q K ฯƒโ‚ ฯƒโ‚‚ F G] [TileStructure Q (defaultD a) (defaultฮบ a) (defaultS X) (cancelPt X)] {p p' : ๐”“ X} (m : โ„) {n k : โ„} (hk : 0 < k) (hp : ๐“˜ p โ‰  ๐“˜ p') (hl : smul n p โ‰ค smul k p') :
                                  smul (n + C2_1_2 a * m) p โ‰ค smul m p'

                                  Lemma 5.3.2 (generalizing 1 to k > 0)

                                  theorem dist_LTSeries {X : Type u_1} [PseudoMetricSpace X] {a : โ„•} {q : โ„} {K : X โ†’ X โ†’ โ„‚} {ฯƒโ‚ ฯƒโ‚‚ : X โ†’ โ„ค} {F G : Set X} [ProofData a q K ฯƒโ‚ ฯƒโ‚‚ F G] [TileStructure Q (defaultD a) (defaultฮบ a) (defaultS X) (cancelPt X)] {n : โ„•} {u : Set (๐”“ X)} {s : LTSeries โ†‘u} (hs : s.length = n) {f g : ฮ˜ X} :
                                  dist_{๐”  โ†‘(RelSeries.head s), โ†‘(defaultD a) ^ ๐”ฐ โ†‘(RelSeries.head s) / 4} f g โ‰ค C2_1_2 a ^ n * dist_{๐”  โ†‘(RelSeries.last s), โ†‘(defaultD a) ^ ๐”ฐ โ†‘(RelSeries.last s) / 4} f g

                                  The constraint on ฮป in the first part of Lemma 5.3.3.

                                  Equations
                                  Instances For
                                    theorem C5_3_3_le {X : Type u_1} [PseudoMetricSpace X] {a : โ„•} {q : โ„} {K : X โ†’ X โ†’ โ„‚} {ฯƒโ‚ ฯƒโ‚‚ : X โ†’ โ„ค} {F G : Set X} [ProofData a q K ฯƒโ‚ ฯƒโ‚‚ F G] :
                                    C5_3_3 a โ‰ค 11 / 10
                                    theorem wiggle_order_11_10 {X : Type u_1} [PseudoMetricSpace X] {a : โ„•} {q : โ„} {K : X โ†’ X โ†’ โ„‚} {ฯƒโ‚ ฯƒโ‚‚ : X โ†’ โ„ค} {F G : Set X} [ProofData a q K ฯƒโ‚ ฯƒโ‚‚ F G] [TileStructure Q (defaultD a) (defaultฮบ a) (defaultS X) (cancelPt X)] {p p' : ๐”“ X} {n : โ„} (hp : p โ‰ค p') (hn : C5_3_3 a โ‰ค n) :
                                    smul n p โ‰ค smul n p'

                                    Lemma 5.3.3, Equation (5.3.3)

                                    theorem wiggle_order_100 {X : Type u_1} [PseudoMetricSpace X] {a : โ„•} {q : โ„} {K : X โ†’ X โ†’ โ„‚} {ฯƒโ‚ ฯƒโ‚‚ : X โ†’ โ„ค} {F G : Set X} [ProofData a q K ฯƒโ‚ ฯƒโ‚‚ F G] [TileStructure Q (defaultD a) (defaultฮบ a) (defaultS X) (cancelPt X)] {p p' : ๐”“ X} (hp : smul 10 p โ‰ค smul 1 p') (hn : ๐“˜ p โ‰  ๐“˜ p') :
                                    smul 100 p โ‰ค smul 100 p'

                                    Lemma 5.3.3, Equation (5.3.4)

                                    theorem wiggle_order_500 {X : Type u_1} [PseudoMetricSpace X] {a : โ„•} {q : โ„} {K : X โ†’ X โ†’ โ„‚} {ฯƒโ‚ ฯƒโ‚‚ : X โ†’ โ„ค} {F G : Set X} [ProofData a q K ฯƒโ‚ ฯƒโ‚‚ F G] [TileStructure Q (defaultD a) (defaultฮบ a) (defaultS X) (cancelPt X)] {p p' : ๐”“ X} (hp : smul 2 p โ‰ค smul 1 p') (hn : ๐“˜ p โ‰  ๐“˜ p') :
                                    smul 4 p โ‰ค smul 500 p'

                                    Lemma 5.3.3, Equation (5.3.5)

                                    Equations
                                    Instances For
                                      def TileLike.toTile {X : Type u_1} [PseudoMetricSpace X] {a : โ„•} {q : โ„} {K : X โ†’ X โ†’ โ„‚} {ฯƒโ‚ ฯƒโ‚‚ : X โ†’ โ„ค} {F G : Set X} [ProofData a q K ฯƒโ‚ ฯƒโ‚‚ F G] [TileStructure Q (defaultD a) (defaultฮบ a) (defaultS X) (cancelPt X)] (t : TileLike X) :
                                      Equations
                                      Instances For
                                        def TileLike.toSet {X : Type u_1} [PseudoMetricSpace X] {a : โ„•} {q : โ„} {K : X โ†’ X โ†’ โ„‚} {ฯƒโ‚ ฯƒโ‚‚ : X โ†’ โ„ค} {F G : Set X} [ProofData a q K ฯƒโ‚ ฯƒโ‚‚ F G] [TileStructure Q (defaultD a) (defaultฮบ a) (defaultS X) (cancelPt X)] (t : TileLike X) :
                                        Set X

                                        From a TileLike, we can construct a set. This is used in the definitions Eโ‚ and Eโ‚‚.

                                        Equations
                                        Instances For
                                          def Eโ‚ {X : Type u_1} [PseudoMetricSpace X] {a : โ„•} {q : โ„} {K : X โ†’ X โ†’ โ„‚} {ฯƒโ‚ ฯƒโ‚‚ : X โ†’ โ„ค} {F G : Set X} [ProofData a q K ฯƒโ‚ ฯƒโ‚‚ F G] [TileStructure Q (defaultD a) (defaultฮบ a) (defaultS X) (cancelPt X)] (p : ๐”“ X) :
                                          Set X
                                          Equations
                                          Instances For
                                            def Eโ‚‚ {X : Type u_1} [PseudoMetricSpace X] {a : โ„•} {q : โ„} {K : X โ†’ X โ†’ โ„‚} {ฯƒโ‚ ฯƒโ‚‚ : X โ†’ โ„ค} {F G : Set X} [ProofData a q K ฯƒโ‚ ฯƒโ‚‚ F G] [TileStructure Q (defaultD a) (defaultฮบ a) (defaultS X) (cancelPt X)] (l : โ„) (p : ๐”“ X) :
                                            Set X
                                            Equations
                                            Instances For
                                              theorem Eโ‚_subset {X : Type u_1} [PseudoMetricSpace X] {a : โ„•} {q : โ„} {K : X โ†’ X โ†’ โ„‚} {ฯƒโ‚ ฯƒโ‚‚ : X โ†’ โ„ค} {F G : Set X} [ProofData a q K ฯƒโ‚ ฯƒโ‚‚ F G] [TileStructure Q (defaultD a) (defaultฮบ a) (defaultS X) (cancelPt X)] (p : ๐”“ X) :
                                              theorem Eโ‚‚_subset {X : Type u_1} [PseudoMetricSpace X] {a : โ„•} {q : โ„} {K : X โ†’ X โ†’ โ„‚} {ฯƒโ‚ ฯƒโ‚‚ : X โ†’ โ„ค} {F G : Set X} [ProofData a q K ฯƒโ‚ ฯƒโ‚‚ F G] [TileStructure Q (defaultD a) (defaultฮบ a) (defaultS X) (cancelPt X)] (l : โ„) (p : ๐”“ X) :
                                              Eโ‚‚ l p โІ โ†‘(๐“˜ p)
                                              theorem Eโ‚‚_mono {X : Type u_1} [PseudoMetricSpace X] {a : โ„•} {q : โ„} {K : X โ†’ X โ†’ โ„‚} {ฯƒโ‚ ฯƒโ‚‚ : X โ†’ โ„ค} {F G : Set X} [ProofData a q K ฯƒโ‚ ฯƒโ‚‚ F G] [TileStructure Q (defaultD a) (defaultฮบ a) (defaultS X) (cancelPt X)] {p : ๐”“ X} :
                                              Monotone fun (l : โ„) => Eโ‚‚ l p
                                              def lowerCubes {X : Type u_1} [PseudoMetricSpace X] {a : โ„•} {q : โ„} {K : X โ†’ X โ†’ โ„‚} {ฯƒโ‚ ฯƒโ‚‚ : X โ†’ โ„ค} {F G : Set X} [ProofData a q K ฯƒโ‚ ฯƒโ‚‚ F G] [TileStructure Q (defaultD a) (defaultฮบ a) (defaultS X) (cancelPt X)] (๐”“' : Set (๐”“ X)) :

                                              ๐”“(๐”“') in the blueprint. The set of all tiles whose cubes are less than the cube of some tile in the given set.

                                              Equations
                                              Instances For
                                                theorem mem_lowerCubes {X : Type u_1} [PseudoMetricSpace X] {a : โ„•} {q : โ„} {K : X โ†’ X โ†’ โ„‚} {ฯƒโ‚ ฯƒโ‚‚ : X โ†’ โ„ค} {F G : Set X} [ProofData a q K ฯƒโ‚ ฯƒโ‚‚ F G] [TileStructure Q (defaultD a) (defaultฮบ a) (defaultS X) (cancelPt X)] {p : ๐”“ X} {๐”“' : Set (๐”“ X)} :
                                                p โˆˆ lowerCubes ๐”“' โ†” โˆƒ p' โˆˆ ๐”“', ๐“˜ p โ‰ค ๐“˜ p'
                                                theorem lowerCubes_mono {X : Type u_1} [PseudoMetricSpace X] {a : โ„•} {q : โ„} {K : X โ†’ X โ†’ โ„‚} {ฯƒโ‚ ฯƒโ‚‚ : X โ†’ โ„ค} {F G : Set X} [ProofData a q K ฯƒโ‚ ฯƒโ‚‚ F G] [TileStructure Q (defaultD a) (defaultฮบ a) (defaultS X) (cancelPt X)] :
                                                theorem subset_lowerCubes {X : Type u_1} [PseudoMetricSpace X] {a : โ„•} {q : โ„} {K : X โ†’ X โ†’ โ„‚} {ฯƒโ‚ ฯƒโ‚‚ : X โ†’ โ„ค} {F G : Set X} [ProofData a q K ฯƒโ‚ ฯƒโ‚‚ F G] [TileStructure Q (defaultD a) (defaultฮบ a) (defaultS X) (cancelPt X)] {๐”“' : Set (๐”“ X)} :
                                                ๐”“' โІ lowerCubes ๐”“'
                                                def densโ‚ {X : Type u_1} [PseudoMetricSpace X] {a : โ„•} {q : โ„} {K : X โ†’ X โ†’ โ„‚} {ฯƒโ‚ ฯƒโ‚‚ : X โ†’ โ„ค} {F G : Set X} [ProofData a q K ฯƒโ‚ ฯƒโ‚‚ F G] [TileStructure Q (defaultD a) (defaultฮบ a) (defaultS X) (cancelPt X)] (๐”“' : Set (๐”“ X)) :

                                                This density is defined to live in โ„โ‰ฅ0โˆž. Use ENNReal.toReal to get a real number.

                                                Equations
                                                • One or more equations did not get rendered due to their size.
                                                Instances For
                                                  theorem densโ‚_mono {X : Type u_1} [PseudoMetricSpace X] {a : โ„•} {q : โ„} {K : X โ†’ X โ†’ โ„‚} {ฯƒโ‚ ฯƒโ‚‚ : X โ†’ โ„ค} {F G : Set X} [ProofData a q K ฯƒโ‚ ฯƒโ‚‚ F G] [TileStructure Q (defaultD a) (defaultฮบ a) (defaultS X) (cancelPt X)] {๐”“โ‚ ๐”“โ‚‚ : Set (๐”“ X)} (h : ๐”“โ‚ โІ ๐”“โ‚‚) :
                                                  densโ‚ ๐”“โ‚ โ‰ค densโ‚ ๐”“โ‚‚
                                                  def densโ‚‚ {X : Type u_1} [PseudoMetricSpace X] {a : โ„•} {q : โ„} {K : X โ†’ X โ†’ โ„‚} {ฯƒโ‚ ฯƒโ‚‚ : X โ†’ โ„ค} {F G : Set X} [ProofData a q K ฯƒโ‚ ฯƒโ‚‚ F G] [TileStructure Q (defaultD a) (defaultฮบ a) (defaultS X) (cancelPt X)] (๐”“' : Set (๐”“ X)) :

                                                  This density is defined to live in โ„โ‰ฅ0โˆž. Use ENNReal.toReal to get a real number.

                                                  Equations
                                                  Instances For
                                                    theorem le_densโ‚‚ {X : Type u_1} [PseudoMetricSpace X] {a : โ„•} {q : โ„} {K : X โ†’ X โ†’ โ„‚} {ฯƒโ‚ ฯƒโ‚‚ : X โ†’ โ„ค} {F G : Set X} [ProofData a q K ฯƒโ‚ ฯƒโ‚‚ F G] [TileStructure Q (defaultD a) (defaultฮบ a) (defaultS X) (cancelPt X)] (๐”“' : Set (๐”“ X)) {p : ๐”“ X} (hp : p โˆˆ ๐”“') {r : โ„} (hr : r โ‰ฅ 4 * โ†‘(defaultD a) ^ ๐”ฐ p) :
                                                    theorem densโ‚‚_eq_biSup_densโ‚‚ {X : Type u_1} [PseudoMetricSpace X] {a : โ„•} {q : โ„} {K : X โ†’ X โ†’ โ„‚} {ฯƒโ‚ ฯƒโ‚‚ : X โ†’ โ„ค} {F G : Set X} [ProofData a q K ฯƒโ‚ ฯƒโ‚‚ F G] [TileStructure Q (defaultD a) (defaultฮบ a) (defaultS X) (cancelPt X)] (๐”“' : Set (๐”“ X)) :
                                                    densโ‚‚ ๐”“' = โจ† p โˆˆ ๐”“', densโ‚‚ {p}
                                                    theorem densโ‚_le_one {X : Type u_1} [PseudoMetricSpace X] {a : โ„•} {q : โ„} {K : X โ†’ X โ†’ โ„‚} {ฯƒโ‚ ฯƒโ‚‚ : X โ†’ โ„ค} {F G : Set X} [ProofData a q K ฯƒโ‚ ฯƒโ‚‚ F G] [TileStructure Q (defaultD a) (defaultฮบ a) (defaultS X) (cancelPt X)] {๐”“' : Set (๐”“ X)} :
                                                    densโ‚ ๐”“' โ‰ค 1
                                                    theorem volume_Eโ‚‚_le_densโ‚_mul_volume {X : Type u_1} [PseudoMetricSpace X] {a : โ„•} {q : โ„} {K : X โ†’ X โ†’ โ„‚} {ฯƒโ‚ ฯƒโ‚‚ : X โ†’ โ„ค} {F G : Set X} [ProofData a q K ฯƒโ‚ ฯƒโ‚‚ F G] [TileStructure Q (defaultD a) (defaultฮบ a) (defaultS X) (cancelPt X)] {p p' : ๐”“ X} {๐”“' : Set (๐”“ X)} (mp : p โˆˆ lowerCubes ๐”“') (mp' : p' โˆˆ ๐”“') {l : NNReal} (hl : 2 โ‰ค l) (sp : smul (โ†‘l) p' โ‰ค smul (โ†‘l) p) :
                                                    MeasureTheory.volume (Eโ‚‚ (โ†‘l) p) โ‰ค โ†‘l ^ a * densโ‚ ๐”“' * MeasureTheory.volume โ†‘(๐“˜ p)

                                                    Stack sizes #

                                                    def stackSize {X : Type u_1} [PseudoMetricSpace X] {a : โ„•} {q : โ„} {K : X โ†’ X โ†’ โ„‚} {ฯƒโ‚ ฯƒโ‚‚ : X โ†’ โ„ค} {F G : Set X} [ProofData a q K ฯƒโ‚ ฯƒโ‚‚ F G] [TileStructure Q (defaultD a) (defaultฮบ a) (defaultS X) (cancelPt X)] (C : Set (๐”“ X)) (x : X) :

                                                    The number of tiles p in s whose underlying cube ๐“˜ p contains x.

                                                    Equations
                                                    Instances For
                                                      theorem stackSize_setOf_add_stackSize_setOf_not {X : Type u_1} [PseudoMetricSpace X] {a : โ„•} {q : โ„} {K : X โ†’ X โ†’ โ„‚} {ฯƒโ‚ ฯƒโ‚‚ : X โ†’ โ„ค} {F G : Set X} [ProofData a q K ฯƒโ‚ ฯƒโ‚‚ F G] [TileStructure Q (defaultD a) (defaultฮบ a) (defaultS X) (cancelPt X)] {C : Set (๐”“ X)} {x : X} {P : ๐”“ X โ†’ Prop} :
                                                      theorem stackSize_inter_add_stackSize_sdiff {X : Type u_1} [PseudoMetricSpace X] {a : โ„•} {q : โ„} {K : X โ†’ X โ†’ โ„‚} {ฯƒโ‚ ฯƒโ‚‚ : X โ†’ โ„ค} {F G : Set X} [ProofData a q K ฯƒโ‚ ฯƒโ‚‚ F G] [TileStructure Q (defaultD a) (defaultฮบ a) (defaultS X) (cancelPt X)] {C C' : Set (๐”“ X)} {x : X} :
                                                      stackSize (C โˆฉ C') x + stackSize (C \ C') x = stackSize C x
                                                      theorem stackSize_sdiff_eq {X : Type u_1} [PseudoMetricSpace X] {a : โ„•} {q : โ„} {K : X โ†’ X โ†’ โ„‚} {ฯƒโ‚ ฯƒโ‚‚ : X โ†’ โ„ค} {F G : Set X} [ProofData a q K ฯƒโ‚ ฯƒโ‚‚ F G] [TileStructure Q (defaultD a) (defaultฮบ a) (defaultS X) (cancelPt X)] {C C' : Set (๐”“ X)} (x : X) :
                                                      stackSize (C \ C') x = stackSize C x - stackSize (C โˆฉ C') x
                                                      theorem stackSize_congr {X : Type u_1} [PseudoMetricSpace X] {a : โ„•} {q : โ„} {K : X โ†’ X โ†’ โ„‚} {ฯƒโ‚ ฯƒโ‚‚ : X โ†’ โ„ค} {F G : Set X} [ProofData a q K ฯƒโ‚ ฯƒโ‚‚ F G] [TileStructure Q (defaultD a) (defaultฮบ a) (defaultS X) (cancelPt X)] {C : Set (๐”“ X)} {x x' : X} (h : โˆ€ p โˆˆ C, x โˆˆ โ†‘(๐“˜ p) โ†” x' โˆˆ โ†‘(๐“˜ p)) :
                                                      theorem stackSize_mono {X : Type u_1} [PseudoMetricSpace X] {a : โ„•} {q : โ„} {K : X โ†’ X โ†’ โ„‚} {ฯƒโ‚ ฯƒโ‚‚ : X โ†’ โ„ค} {F G : Set X} [ProofData a q K ฯƒโ‚ ฯƒโ‚‚ F G] [TileStructure Q (defaultD a) (defaultฮบ a) (defaultS X) (cancelPt X)] {C C' : Set (๐”“ X)} {x : X} (h : C โІ C') :
                                                      theorem stackSize_real {X : Type u_1} [PseudoMetricSpace X] {a : โ„•} {q : โ„} {K : X โ†’ X โ†’ โ„‚} {ฯƒโ‚ ฯƒโ‚‚ : X โ†’ โ„ค} {F G : Set X} [ProofData a q K ฯƒโ‚ ฯƒโ‚‚ F G] [TileStructure Q (defaultD a) (defaultฮบ a) (defaultS X) (cancelPt X)] (C : Set (๐”“ X)) (x : X) :
                                                      โ†‘(stackSize C x) = โˆ‘ p : ๐”“ X with p โˆˆ C, (โ†‘(๐“˜ p)).indicator 1 x
                                                      theorem stackSize_measurable {X : Type u_1} [PseudoMetricSpace X] {a : โ„•} {q : โ„} {K : X โ†’ X โ†’ โ„‚} {ฯƒโ‚ ฯƒโ‚‚ : X โ†’ โ„ค} {F G : Set X} [ProofData a q K ฯƒโ‚ ฯƒโ‚‚ F G] [TileStructure Q (defaultD a) (defaultฮบ a) (defaultS X) (cancelPt X)] {C : Set (๐”“ X)} :
                                                      Measurable fun (x : X) => โ†‘(stackSize C x)
                                                      theorem stackSize_le_one_of_pairwiseDisjoint {X : Type u_1} [PseudoMetricSpace X] {a : โ„•} {q : โ„} {K : X โ†’ X โ†’ โ„‚} {ฯƒโ‚ ฯƒโ‚‚ : X โ†’ โ„ค} {F G : Set X} [ProofData a q K ฯƒโ‚ ฯƒโ‚‚ F G] [TileStructure Q (defaultD a) (defaultฮบ a) (defaultS X) (cancelPt X)] {C : Set (๐”“ X)} {x : X} (h : C.PairwiseDisjoint fun (p : ๐”“ X) => โ†‘(๐“˜ p)) :
                                                      theorem eq_empty_of_forall_stackSize_zero {X : Type u_1} [PseudoMetricSpace X] {a : โ„•} {q : โ„} {K : X โ†’ X โ†’ โ„‚} {ฯƒโ‚ ฯƒโ‚‚ : X โ†’ โ„ค} {F G : Set X} [ProofData a q K ฯƒโ‚ ฯƒโ‚‚ F G] [TileStructure Q (defaultD a) (defaultฮบ a) (defaultS X) (cancelPt X)] (s : Set (๐”“ X)) :
                                                      (โˆ€ (x : X), stackSize s x = 0) โ†’ s = โˆ…

                                                      Decomposing a set of tiles into disjoint subfamilies #

                                                      theorem exists_maximal_disjoint_covering_subfamily {X : Type u_1} [PseudoMetricSpace X] {a : โ„•} {q : โ„} {K : X โ†’ X โ†’ โ„‚} {ฯƒโ‚ ฯƒโ‚‚ : X โ†’ โ„ค} {F G : Set X} [ProofData a q K ฯƒโ‚ ฯƒโ‚‚ F G] [TileStructure Q (defaultD a) (defaultฮบ a) (defaultS X) (cancelPt X)] (A : Set (๐”“ X)) :
                                                      โˆƒ (B : Set (๐”“ X)), (B.PairwiseDisjoint fun (p : ๐”“ X) => โ†‘(๐“˜ p)) โˆง B โІ A โˆง โˆ€ a_1 โˆˆ A, โˆƒ b โˆˆ B, โ†‘(๐“˜ a_1) โІ โ†‘(๐“˜ b)

                                                      Given any family of tiles, one can extract a maximal disjoint subfamily, covering everything.

                                                      def maximalSubfamily {X : Type u_1} [PseudoMetricSpace X] {a : โ„•} {q : โ„} {K : X โ†’ X โ†’ โ„‚} {ฯƒโ‚ ฯƒโ‚‚ : X โ†’ โ„ค} {F G : Set X} [ProofData a q K ฯƒโ‚ ฯƒโ‚‚ F G] [TileStructure Q (defaultD a) (defaultฮบ a) (defaultS X) (cancelPt X)] (A : Set (๐”“ X)) :

                                                      A disjoint subfamily of A covering everything.

                                                      Equations
                                                      Instances For
                                                        @[irreducible]
                                                        def iteratedMaximalSubfamily {X : Type u_1} [PseudoMetricSpace X] {a : โ„•} {q : โ„} {K : X โ†’ X โ†’ โ„‚} {ฯƒโ‚ ฯƒโ‚‚ : X โ†’ โ„ค} {F G : Set X} [ProofData a q K ฯƒโ‚ ฯƒโ‚‚ F G] [TileStructure Q (defaultD a) (defaultฮบ a) (defaultS X) (cancelPt X)] (A : Set (๐”“ X)) (n : โ„•) :

                                                        Iterating maximalSubfamily to obtain disjoint subfamilies of A.

                                                        Equations
                                                        Instances For
                                                          theorem pairwiseDisjoint_iteratedMaximalSubfamily_image {X : Type u_1} [PseudoMetricSpace X] {a : โ„•} {q : โ„} {K : X โ†’ X โ†’ โ„‚} {ฯƒโ‚ ฯƒโ‚‚ : X โ†’ โ„ค} {F G : Set X} [ProofData a q K ฯƒโ‚ ฯƒโ‚‚ F G] [TileStructure Q (defaultD a) (defaultฮบ a) (defaultS X) (cancelPt X)] (A : Set (๐”“ X)) (n : โ„•) :
                                                          theorem iteratedMaximalSubfamily_subset {X : Type u_1} [PseudoMetricSpace X] {a : โ„•} {q : โ„} {K : X โ†’ X โ†’ โ„‚} {ฯƒโ‚ ฯƒโ‚‚ : X โ†’ โ„ค} {F G : Set X} [ProofData a q K ฯƒโ‚ ฯƒโ‚‚ F G] [TileStructure Q (defaultD a) (defaultฮบ a) (defaultS X) (cancelPt X)] (A : Set (๐”“ X)) (n : โ„•) :
                                                          theorem pairwiseDisjoint_iteratedMaximalSubfamily {X : Type u_1} [PseudoMetricSpace X] {a : โ„•} {q : โ„} {K : X โ†’ X โ†’ โ„‚} {ฯƒโ‚ ฯƒโ‚‚ : X โ†’ โ„ค} {F G : Set X} [ProofData a q K ฯƒโ‚ ฯƒโ‚‚ F G] [TileStructure Q (defaultD a) (defaultฮบ a) (defaultS X) (cancelPt X)] (A : Set (๐”“ X)) :
                                                          theorem eq_biUnion_iteratedMaximalSubfamily {X : Type u_1} [PseudoMetricSpace X] {a : โ„•} {q : โ„} {K : X โ†’ X โ†’ โ„‚} {ฯƒโ‚ ฯƒโ‚‚ : X โ†’ โ„ค} {F G : Set X} [ProofData a q K ฯƒโ‚ ฯƒโ‚‚ F G] [TileStructure Q (defaultD a) (defaultฮบ a) (defaultS X) (cancelPt X)] (A : Set (๐”“ X)) {N : โ„•} (hN : โˆ€ (x : X), stackSize A x โ‰ค N) :
                                                          A = โ‹ƒ (n : โ„•), โ‹ƒ (_ : n < N), iteratedMaximalSubfamily A n

                                                          Any set of tiles can be written as the union of disjoint subfamilies, their number being controlled by the maximal stack size.