ProofData. #
This file introduces the class ProofData, used to bundle data common through most of
chapters 2-7 (except 3), and provides API for it.
class
ProofData
{X : Type u_1}
(a : outParam ℕ)
(q : outParam ℝ)
(K : outParam (X → X → ℂ))
(σ₁ σ₂ : outParam (X → ℤ))
(F G : outParam (Set X))
[PseudoMetricSpace X]
extends KernelProofData a K :
Type (u_1 + 1)
Data common through most of chapters 2-7 (except 3).
- d : MeasureTheory.DoublingMeasure X ↑(defaultA a)
- cf : CompatibleFunctions ℝ X (defaultA a)
- hcz : IsOneSidedKernel a K
- c : IsCancellative X (defaultτ a)
- isBounded_F : Bornology.IsBounded F
- isBounded_G : Bornology.IsBounded G
- measurableSet_F : MeasurableSet F
- measurableSet_G : MeasurableSet G
- measurable_σ₁ : Measurable σ₁
- measurable_σ₂ : Measurable σ₂
- Q : MeasureTheory.SimpleFunc X (Θ X)
- BST_T_Q (θ : Θ X) : MeasureTheory.HasBoundedStrongType (fun (x1 : X → ℂ) (x2 : X) => linearizedNontangentialOperator (⇑Q) θ K x1 x2) 2 2 MeasureTheory.volume MeasureTheory.volume ↑(C_Ts a)
Instances
Equations
- ShortVariables.termNnq = Lean.ParserDescr.node `ShortVariables.termNnq 1024 (Lean.ParserDescr.symbol "nnq")
Instances For
theorem
volume_F_lt_top
{X : Type u_1}
{a : ℕ}
{q : ℝ}
{K : X → X → ℂ}
{σ₁ σ₂ : X → ℤ}
{F G : Set X}
[PseudoMetricSpace X]
[ProofData a q K σ₁ σ₂ F G]
:
theorem
volume_F_ne_top
{X : Type u_1}
{a : ℕ}
{q : ℝ}
{K : X → X → ℂ}
{σ₁ σ₂ : X → ℤ}
{F G : Set X}
[PseudoMetricSpace X]
[ProofData a q K σ₁ σ₂ F G]
:
theorem
volume_G_lt_top
{X : Type u_1}
{a : ℕ}
{q : ℝ}
{K : X → X → ℂ}
{σ₁ σ₂ : X → ℤ}
{F G : Set X}
[PseudoMetricSpace X]
[ProofData a q K σ₁ σ₂ F G]
:
theorem
volume_G_ne_top
{X : Type u_1}
{a : ℕ}
{q : ℝ}
{K : X → X → ℂ}
{σ₁ σ₂ : X → ℤ}
{F G : Set X}
[PseudoMetricSpace X]
[ProofData a q K σ₁ σ₂ F G]
:
Lemma 2.1.1
theorem
Θ.finite_and_mk_le_of_le_dist
{X : Type u_1}
{a : ℕ}
{q : ℝ}
{K : X → X → ℂ}
{σ₁ σ₂ : X → ℤ}
{F G : Set X}
[PseudoMetricSpace X]
[ProofData a q K σ₁ σ₂ F G]
{x₀ : X}
{r R : ℝ}
{f : Θ X}
{k : ℕ}
{𝓩 : Set (Θ X)}
(h𝓩 : 𝓩 ⊆ ball_{x₀, R} f (r * 2 ^ k))
(h2𝓩 : 𝓩.PairwiseDisjoint fun (x : Θ X) => ball_{x₀, R} x r)
:
theorem
Θ.card_le_of_le_dist
{X : Type u_1}
{a : ℕ}
{q : ℝ}
{K : X → X → ℂ}
{σ₁ σ₂ : X → ℤ}
{F G : Set X}
[PseudoMetricSpace X]
[ProofData a q K σ₁ σ₂ F G]
{x₀ : X}
{r R : ℝ}
{f : Θ X}
{k : ℕ}
{𝓩 : Set (Θ X)}
(h𝓩 : 𝓩 ⊆ ball_{x₀, R} f (r * 2 ^ k))
(h2𝓩 : 𝓩.PairwiseDisjoint fun (x : Θ X) => ball_{x₀, R} x r)
: