Documentation

Carleson.ProofData

ProofData. #

This file introduces the class ProofData, used to bundle data common through most of chapters 2-7 (except 3), and provides API for it.

class ProofData {X : Type u_1} (a : outParam ) (q : outParam ) (K : outParam (XX)) (σ₁ σ₂ : outParam (X)) (F G : outParam (Set X)) [PseudoMetricSpace X] extends KernelProofData a K :
Type (u_1 + 1)

Data common through most of chapters 2-7 (except 3).

Instances
    theorem S_spec (X : Type u_1) {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [PseudoMetricSpace X] [ProofData a q K σ₁ σ₂ F G] :
    ∃ (n : ), (∀ (x : X), -n σ₁ x σ₂ x n) F Metric.ball (cancelPt X) ((defaultD a) ^ n / 4) G Metric.ball (cancelPt X) ((defaultD a) ^ n / 4) 0 < n
    def defaultS (X : Type u_1) {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [PseudoMetricSpace X] [ProofData a q K σ₁ σ₂ F G] :
    Equations
    Instances For
      theorem range_σ₁_subset {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [PseudoMetricSpace X] [ProofData a q K σ₁ σ₂ F G] :
      Set.range σ₁ Set.Icc (-(defaultS X)) (defaultS X)
      theorem range_σ₂_subset {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [PseudoMetricSpace X] [ProofData a q K σ₁ σ₂ F G] :
      Set.range σ₂ Set.Icc (-(defaultS X)) (defaultS X)
      theorem F_subset {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [PseudoMetricSpace X] [ProofData a q K σ₁ σ₂ F G] :
      theorem G_subset {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [PseudoMetricSpace X] [ProofData a q K σ₁ σ₂ F G] :
      theorem defaultS_pos {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [PseudoMetricSpace X] [ProofData a q K σ₁ σ₂ F G] :
      theorem Icc_σ_subset_Icc_S {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [PseudoMetricSpace X] [ProofData a q K σ₁ σ₂ F G] {x : X} :
      Set.Icc (σ₁ x) (σ₂ x) Set.Icc (-(defaultS X)) (defaultS X)
      theorem one_lt_q (X : Type u_1) {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [PseudoMetricSpace X] [ProofData a q K σ₁ σ₂ F G] :
      1 < q
      theorem q_le_two (X : Type u_1) {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [PseudoMetricSpace X] [ProofData a q K σ₁ σ₂ F G] :
      q 2
      theorem q_pos (X : Type u_1) {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [PseudoMetricSpace X] [ProofData a q K σ₁ σ₂ F G] :
      0 < q
      theorem q_nonneg (X : Type u_1) {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [PseudoMetricSpace X] [ProofData a q K σ₁ σ₂ F G] :
      0 q
      theorem inv_q_sub_half_nonneg (X : Type u_1) {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [PseudoMetricSpace X] [ProofData a q K σ₁ σ₂ F G] :
      theorem inv_q_mem_Ico (X : Type u_1) {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [PseudoMetricSpace X] [ProofData a q K σ₁ σ₂ F G] :
      def nnq (X : Type u_1) {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [PseudoMetricSpace X] [ProofData a q K σ₁ σ₂ F G] :

      q as an element of ℝ≥0.

      Equations
      Instances For
        theorem one_lt_nnq (X : Type u_1) {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [PseudoMetricSpace X] [ProofData a q K σ₁ σ₂ F G] :
        1 < nnq X
        theorem nnq_le_two (X : Type u_1) {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [PseudoMetricSpace X] [ProofData a q K σ₁ σ₂ F G] :
        nnq X 2
        theorem nnq_pos (X : Type u_1) {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [PseudoMetricSpace X] [ProofData a q K σ₁ σ₂ F G] :
        0 < nnq X
        theorem nnq_mem_Ioc (X : Type u_1) {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [PseudoMetricSpace X] [ProofData a q K σ₁ σ₂ F G] :
        theorem two_le_κZ {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [PseudoMetricSpace X] [ProofData a q K σ₁ σ₂ F G] :
        2 defaultκ a * (defaultZ a)

        Used in third_exception (Lemma 5.2.10).

        theorem DκZ_le_two_rpow_100 {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [PseudoMetricSpace X] [ProofData a q K σ₁ σ₂ F G] :
        (defaultD a) ^ (-defaultκ a * (defaultZ a)) 2 ^ (-100)

        Used in third_exception (Lemma 5.2.10).

        theorem four_le_Z {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [PseudoMetricSpace X] [ProofData a q K σ₁ σ₂ F G] :
        theorem volume_F_lt_top {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [PseudoMetricSpace X] [ProofData a q K σ₁ σ₂ F G] :
        theorem volume_F_ne_top {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [PseudoMetricSpace X] [ProofData a q K σ₁ σ₂ F G] :
        theorem volume_G_lt_top {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [PseudoMetricSpace X] [ProofData a q K σ₁ σ₂ F G] :
        theorem volume_G_ne_top {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [PseudoMetricSpace X] [ProofData a q K σ₁ σ₂ F G] :

        Lemma 2.1.1

        def C2_1_1 (k a : ) :
        Equations
        Instances For
          theorem Θ.finite_and_mk_le_of_le_dist {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [PseudoMetricSpace X] [ProofData a q K σ₁ σ₂ F G] {x₀ : X} {r R : } {f : Θ X} {k : } {𝓩 : Set (Θ X)} (h𝓩 : 𝓩 ball_{x₀, R} f (r * 2 ^ k)) (h2𝓩 : 𝓩.PairwiseDisjoint fun (x : Θ X) => ball_{x₀, R} x r) :
          𝓩.Finite Cardinal.mk 𝓩 (C2_1_1 k a)
          theorem Θ.card_le_of_le_dist {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [PseudoMetricSpace X] [ProofData a q K σ₁ σ₂ F G] {x₀ : X} {r R : } {f : Θ X} {k : } {𝓩 : Set (Θ X)} (h𝓩 : 𝓩 ball_{x₀, R} f (r * 2 ^ k)) (h2𝓩 : 𝓩.PairwiseDisjoint fun (x : Θ X) => ball_{x₀, R} x r) :
          Nat.card 𝓩 C2_1_1 k a