Lemmas 7.4.4 #
@[irreducible]
The constant used in correlation_separated_trees
.
Has value 2 ^ (550 * a ^ 3 - 3 * n)
in the blueprint.
Instances For
theorem
TileStructure.Forest.correlation_separated_trees_of_subset
{X : Type u_1}
{a : ℕ}
{q : ℝ}
{K : X → X → ℂ}
{σ₁ σ₂ : X → ℤ}
{F G : Set X}
[MetricSpace X]
[ProofData a q K σ₁ σ₂ F G]
[TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)]
{n : ℕ}
{t : TileStructure.Forest X n}
{u₁ u₂ : 𝔓 X}
{f₁ f₂ g₁ g₂ : X → ℂ}
(hu₁ : u₁ ∈ t)
(hu₂ : u₂ ∈ t)
(hu : u₁ ≠ u₂)
(h2u : 𝓘 u₁ ≤ 𝓘 u₂)
(hf₁ : Bornology.IsBounded (Set.range f₁))
(h2f₁ : HasCompactSupport f₁)
(hf₂ : Bornology.IsBounded (Set.range f₂))
(h2f₂ : HasCompactSupport f₂)
:
↑‖∫ (x : X),
TileStructure.Forest.adjointCarlesonSum ((fun (x : 𝔓 X) => t.𝔗 x) u₁) g₁ x * (starRingEnd ℂ) (TileStructure.Forest.adjointCarlesonSum ((fun (x : 𝔓 X) => t.𝔗 x) u₂) g₂ x)‖₊ ≤ ↑(TileStructure.Forest.C7_4_4 a n) * MeasureTheory.eLpNorm (fun (x : X) => ((↑(𝓘 u₁) ∩ ↑(𝓘 u₂)).indicator (t.adjointBoundaryOperator u₁ g₁) x).toReal)
2 MeasureTheory.volume * MeasureTheory.eLpNorm (fun (x : X) => ((↑(𝓘 u₁) ∩ ↑(𝓘 u₂)).indicator (t.adjointBoundaryOperator u₂ g₂) x).toReal) 2
MeasureTheory.volume
theorem
TileStructure.Forest.correlation_separated_trees
{X : Type u_1}
{a : ℕ}
{q : ℝ}
{K : X → X → ℂ}
{σ₁ σ₂ : X → ℤ}
{F G : Set X}
[MetricSpace X]
[ProofData a q K σ₁ σ₂ F G]
[TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)]
{n : ℕ}
{t : TileStructure.Forest X n}
{u₁ u₂ : 𝔓 X}
{f₁ f₂ g₁ g₂ : X → ℂ}
(hu₁ : u₁ ∈ t)
(hu₂ : u₂ ∈ t)
(hu : u₁ ≠ u₂)
(hf₁ : Bornology.IsBounded (Set.range f₁))
(h2f₁ : HasCompactSupport f₁)
(hf₂ : Bornology.IsBounded (Set.range f₂))
(h2f₂ : HasCompactSupport f₂)
:
↑‖∫ (x : X),
TileStructure.Forest.adjointCarlesonSum ((fun (x : 𝔓 X) => t.𝔗 x) u₁) g₁ x * (starRingEnd ℂ) (TileStructure.Forest.adjointCarlesonSum ((fun (x : 𝔓 X) => t.𝔗 x) u₂) g₂ x)‖₊ ≤ ↑(TileStructure.Forest.C7_4_4 a n) * MeasureTheory.eLpNorm (fun (x : X) => ((↑(𝓘 u₁) ∩ ↑(𝓘 u₂)).indicator (t.adjointBoundaryOperator u₁ g₁) x).toReal)
2 MeasureTheory.volume * MeasureTheory.eLpNorm (fun (x : X) => ((↑(𝓘 u₁) ∩ ↑(𝓘 u₂)).indicator (t.adjointBoundaryOperator u₂ g₂) x).toReal) 2
MeasureTheory.volume
Lemma 7.4.4.
Section 7.7 #
def
TileStructure.Forest.rowDecomp
{X : Type u_1}
{a : ℕ}
{q : ℝ}
{K : X → X → ℂ}
{σ₁ σ₂ : X → ℤ}
{F G : Set X}
[MetricSpace X]
[ProofData a q K σ₁ σ₂ F G]
[TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)]
{n : ℕ}
(t : TileStructure.Forest X n)
(j : ℕ)
:
The row-decomposition of a tree, defined in the proof of Lemma 7.7.1. The indexing is off-by-one compared to the blueprint.
Equations
- t.rowDecomp j = sorry
Instances For
@[simp]
theorem
TileStructure.Forest.biUnion_rowDecomp
{X : Type u_1}
{a : ℕ}
{q : ℝ}
{K : X → X → ℂ}
{σ₁ σ₂ : X → ℤ}
{F G : Set X}
[MetricSpace X]
[ProofData a q K σ₁ σ₂ F G]
[TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)]
{n : ℕ}
{t : TileStructure.Forest X n}
:
Part of Lemma 7.7.1
theorem
TileStructure.Forest.pairwiseDisjoint_rowDecomp
{X : Type u_1}
{a : ℕ}
{q : ℝ}
{K : X → X → ℂ}
{σ₁ σ₂ : X → ℤ}
{F G : Set X}
[MetricSpace X]
[ProofData a q K σ₁ σ₂ F G]
[TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)]
{n : ℕ}
{t : TileStructure.Forest X n}
:
Part of Lemma 7.7.1
@[simp]
theorem
TileStructure.Forest.rowDecomp_apply
{X : Type u_1}
{a : ℕ}
{q : ℝ}
{K : X → X → ℂ}
{σ₁ σ₂ : X → ℤ}
{F G : Set X}
[MetricSpace X]
[ProofData a q K σ₁ σ₂ F G]
[TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)]
{n j : ℕ}
{t : TileStructure.Forest X n}
{u : 𝔓 X}
:
@[irreducible]
The constant used in row_bound
.
Has value 2 ^ (156 * a ^ 3 - n / 2)
in the blueprint.
Instances For
@[irreducible]
The constant used in indicator_row_bound
.
Has value 2 ^ (257 * a ^ 3 - n / 2)
in the blueprint.
Instances For
theorem
TileStructure.Forest.row_bound
{X : Type u_1}
{a : ℕ}
{q : ℝ}
{K : X → X → ℂ}
{σ₁ σ₂ : X → ℤ}
{F G : Set X}
[MetricSpace X]
[ProofData a q K σ₁ σ₂ F G]
[TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)]
{n j : ℕ}
{t : TileStructure.Forest X n}
{f : X → ℂ}
(hj : j < 2 ^ n)
(hf : MeasureTheory.BoundedCompactSupport f)
:
MeasureTheory.eLpNorm
(∑ u ∈ Finset.filter (fun (p : 𝔓 X) => p ∈ t.rowDecomp j) Finset.univ,
TileStructure.Forest.adjointCarlesonSum ((fun (x : 𝔓 X) => t.𝔗 x) u) f)
2 MeasureTheory.volume ≤ ↑(TileStructure.Forest.C7_7_2_1 a n) * MeasureTheory.eLpNorm f 2 MeasureTheory.volume
Part of Lemma 7.7.2.
theorem
TileStructure.Forest.indicator_row_bound
{X : Type u_1}
{a : ℕ}
{q : ℝ}
{K : X → X → ℂ}
{σ₁ σ₂ : X → ℤ}
{F G : Set X}
[MetricSpace X]
[ProofData a q K σ₁ σ₂ F G]
[TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)]
{n j : ℕ}
{t : TileStructure.Forest X n}
{u : 𝔓 X}
{f : X → ℂ}
(hj : j < 2 ^ n)
(hf : MeasureTheory.BoundedCompactSupport f)
:
MeasureTheory.eLpNorm
((∑ u ∈ Finset.filter (fun (p : 𝔓 X) => p ∈ t.rowDecomp j) Finset.univ, F.indicator)
(TileStructure.Forest.adjointCarlesonSum ((fun (x : 𝔓 X) => t.𝔗 x) u) f))
2 MeasureTheory.volume ≤ ↑(TileStructure.Forest.C7_7_2_2 a n) * dens₂ (⋃ u ∈ t, (fun (x : 𝔓 X) => t.𝔗 x) u) ^ 2⁻¹ * MeasureTheory.eLpNorm f 2 MeasureTheory.volume
Part of Lemma 7.7.2.
@[irreducible]
The constant used in row_correlation
.
Has value 2 ^ (862 * a ^ 3 - 3 * n)
in the blueprint.
Instances For
theorem
TileStructure.Forest.row_correlation
{X : Type u_1}
{a : ℕ}
{q : ℝ}
{K : X → X → ℂ}
{σ₁ σ₂ : X → ℤ}
{F G : Set X}
[MetricSpace X]
[ProofData a q K σ₁ σ₂ F G]
[TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)]
{n j j' : ℕ}
{t : TileStructure.Forest X n}
{f₁ f₂ : X → ℂ}
(hjj' : j < j')
(hj' : j' < 2 ^ n)
(hf₁ : Bornology.IsBounded (Set.range f₁))
(h2f₁ : HasCompactSupport f₁)
(hf₂ : Bornology.IsBounded (Set.range f₂))
(h2f₂ : HasCompactSupport f₂)
:
↑‖∫ (x : X),
(∑ u ∈ Finset.filter (fun (p : 𝔓 X) => p ∈ t.rowDecomp j) Finset.univ,
TileStructure.Forest.adjointCarlesonSum ((fun (x : 𝔓 X) => t.𝔗 x) u) f₁ x) * ∑ u ∈ Finset.filter (fun (p : 𝔓 X) => p ∈ t.rowDecomp j') Finset.univ,
TileStructure.Forest.adjointCarlesonSum ((fun (x : 𝔓 X) => t.𝔗 x) u) f₂ x‖₊ ≤ ↑(TileStructure.Forest.C7_7_3 a n) * MeasureTheory.eLpNorm f₁ 2 MeasureTheory.volume * MeasureTheory.eLpNorm f₂ 2 MeasureTheory.volume
Lemma 7.7.3.
def
TileStructure.Forest.rowSupport
{X : Type u_1}
{a : ℕ}
{q : ℝ}
{K : X → X → ℂ}
{σ₁ σ₂ : X → ℤ}
{F G : Set X}
[MetricSpace X]
[ProofData a q K σ₁ σ₂ F G]
[TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)]
{n : ℕ}
(t : TileStructure.Forest X n)
(j : ℕ)
:
Set X
The definition of Eⱼ
defined above Lemma 7.7.4.
Instances For
theorem
TileStructure.Forest.pairwiseDisjoint_rowSupport
{X : Type u_1}
{a : ℕ}
{q : ℝ}
{K : X → X → ℂ}
{σ₁ σ₂ : X → ℤ}
{F G : Set X}
[MetricSpace X]
[ProofData a q K σ₁ σ₂ F G]
[TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)]
{n : ℕ}
{t : TileStructure.Forest X n}
:
Lemma 7.7.4
Proposition 2.0.4 #
theorem
forest_operator
{X : Type u_1}
{a : ℕ}
{q : ℝ}
{K : X → X → ℂ}
{σ₁ σ₂ : X → ℤ}
{F G : Set X}
[MetricSpace X]
[ProofData a q K σ₁ σ₂ F G]
[TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)]
{n : ℕ}
(𝔉 : TileStructure.Forest X n)
{f g : X → ℂ}
(hf : Measurable f)
(h2f : ∀ (x : X), ‖f x‖ ≤ F.indicator 1 x)
(hg : Measurable g)
(h2g : Bornology.IsBounded (Function.support g))
:
↑‖∫ (x : X),
(starRingEnd ℂ) (g x) * ∑ u ∈ Finset.filter (fun (p : 𝔓 X) => p ∈ 𝔉) Finset.univ, carlesonSum ((fun (x : 𝔓 X) => 𝔉.𝔗 x) u) f x‖₊ ≤ ↑(C2_0_4 (↑a) q n) * dens₂ (⋃ u ∈ 𝔉, (fun (x : 𝔓 X) => 𝔉.𝔗 x) u) ^ (q⁻¹ - 2⁻¹) * MeasureTheory.eLpNorm f 2 MeasureTheory.volume * MeasureTheory.eLpNorm g 2 MeasureTheory.volume