Documentation

Carleson.ForestOperator.Forests

Lemma 7.4.4 #

theorem TileStructure.Forest.estimate_C7_4_5 {a : β„•} (n : β„•) (ha : 4 ≀ a) :
C7_4_5 a n ≀ 2 ^ ((4 * 𝕔 + 11 + 4 * (𝕔 / 4)) * a ^ 3) * 2 ^ (-(4 * ↑n))
theorem TileStructure.Forest.estimate_C7_4_6 {a : β„•} (n : β„•) (ha : 4 ≀ a) :
C7_4_6 a n ≀ 2 ^ ((2 * 𝕔 + 9 + 𝕔 / 4) * a ^ 3) * 2 ^ (-(4 * ↑n))
@[irreducible]

The constant used in correlation_separated_trees. Has value 2 ^ (512 * a ^ 3 - 4 * n) in the blueprint.

Equations
Instances For
    theorem TileStructure.Forest.C7_4_4_def (a n : β„•) :
    C7_4_4 a n = 2 ^ ((4 * 𝕔 + 12 + 4 * (𝕔 / 4)) * a ^ 3) * 2 ^ (-(4 * ↑n))
    theorem TileStructure.Forest.correlation_separated_trees_of_subset {X : Type u_1} {a : β„•} {q : ℝ} {K : X β†’ X β†’ β„‚} {σ₁ Οƒβ‚‚ : X β†’ β„€} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ Οƒβ‚‚ F G] [TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)] {n : β„•} {t : Forest X n} {u₁ uβ‚‚ : 𝔓 X} {g₁ gβ‚‚ : X β†’ β„‚} (hu₁ : u₁ ∈ t) (huβ‚‚ : uβ‚‚ ∈ t) (hu : u₁ β‰  uβ‚‚) (h2u : π“˜ u₁ ≀ π“˜ uβ‚‚) (hg₁ : MeasureTheory.BoundedCompactSupport g₁ MeasureTheory.volume) (hgβ‚‚ : MeasureTheory.BoundedCompactSupport gβ‚‚ MeasureTheory.volume) :
    β€–βˆ« (x : X), adjointCarlesonSum ((fun (x : 𝔓 X) => t.𝔗 x) u₁) g₁ x * (starRingEnd β„‚) (adjointCarlesonSum ((fun (x : 𝔓 X) => t.𝔗 x) uβ‚‚) gβ‚‚ x)β€–β‚‘ ≀ ↑(C7_4_4 a n) * MeasureTheory.eLpNorm (fun (x : X) => (↑(π“˜ u₁) ∩ ↑(π“˜ uβ‚‚)).indicator (t.adjointBoundaryOperator u₁ g₁) x) 2 MeasureTheory.volume * MeasureTheory.eLpNorm (fun (x : X) => (↑(π“˜ u₁) ∩ ↑(π“˜ uβ‚‚)).indicator (t.adjointBoundaryOperator uβ‚‚ gβ‚‚) x) 2 MeasureTheory.volume
    theorem TileStructure.Forest.cst_disjoint {X : Type u_1} {a : β„•} {q : ℝ} {K : X β†’ X β†’ β„‚} {σ₁ Οƒβ‚‚ : X β†’ β„€} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ Οƒβ‚‚ F G] [TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)] {n : β„•} {t : Forest X n} {u₁ uβ‚‚ : 𝔓 X} {g₁ gβ‚‚ : X β†’ β„‚} (hd : Disjoint ↑(π“˜ u₁) ↑(π“˜ uβ‚‚)) (hu₁ : u₁ ∈ t) (huβ‚‚ : uβ‚‚ ∈ t) (x : X) :
    adjointCarlesonSum ((fun (x : 𝔓 X) => t.𝔗 x) u₁) g₁ x * (starRingEnd β„‚) (adjointCarlesonSum ((fun (x : 𝔓 X) => t.𝔗 x) uβ‚‚) gβ‚‚ x) = 0
    theorem TileStructure.Forest.correlation_separated_trees {X : Type u_1} {a : β„•} {q : ℝ} {K : X β†’ X β†’ β„‚} {σ₁ Οƒβ‚‚ : X β†’ β„€} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ Οƒβ‚‚ F G] [TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)] {n : β„•} {t : Forest X n} {u₁ uβ‚‚ : 𝔓 X} {g₁ gβ‚‚ : X β†’ β„‚} (hu₁ : u₁ ∈ t) (huβ‚‚ : uβ‚‚ ∈ t) (hu : u₁ β‰  uβ‚‚) (hg₁ : MeasureTheory.BoundedCompactSupport g₁ MeasureTheory.volume) (hgβ‚‚ : MeasureTheory.BoundedCompactSupport gβ‚‚ MeasureTheory.volume) :
    β€–βˆ« (x : X), adjointCarlesonSum ((fun (x : 𝔓 X) => t.𝔗 x) u₁) g₁ x * (starRingEnd β„‚) (adjointCarlesonSum ((fun (x : 𝔓 X) => t.𝔗 x) uβ‚‚) gβ‚‚ x)β€–β‚‘ ≀ ↑(C7_4_4 a n) * MeasureTheory.eLpNorm (fun (x : X) => (↑(π“˜ u₁) ∩ ↑(π“˜ uβ‚‚)).indicator (t.adjointBoundaryOperator u₁ g₁) x) 2 MeasureTheory.volume * MeasureTheory.eLpNorm (fun (x : X) => (↑(π“˜ u₁) ∩ ↑(π“˜ uβ‚‚)).indicator (t.adjointBoundaryOperator uβ‚‚ gβ‚‚) x) 2 MeasureTheory.volume

    Lemma 7.4.4

    Section 7.7 #

    def TileStructure.Forest.rowDecomp_zornset {X : Type u_1} {a : β„•} {q : ℝ} {K : X β†’ X β†’ β„‚} {σ₁ Οƒβ‚‚ : X β†’ β„€} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ Οƒβ‚‚ F G] [TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)] (s : Set (𝔓 X)) :
    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      theorem TileStructure.Forest.mem_rowDecomp_zornset_iff {X : Type u_1} {a : β„•} {q : ℝ} {K : X β†’ X β†’ β„‚} {σ₁ Οƒβ‚‚ : X β†’ β„€} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ Οƒβ‚‚ F G] [TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)] (s s' : Set (𝔓 X)) :
      s' ∈ rowDecomp_zornset s ↔ s' βŠ† s ∧ (s'.PairwiseDisjoint fun (x : 𝔓 X) => ↑(π“˜ x)) ∧ βˆ€ u ∈ s', Maximal (fun (x : Grid X) => x ∈ π“˜ '' s) (π“˜ u)
      theorem TileStructure.Forest.rowDecomp_zornset_chain_Union_bound {X : Type u_1} {a : β„•} {q : ℝ} {K : X β†’ X β†’ β„‚} {σ₁ Οƒβ‚‚ : X β†’ β„€} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ Οƒβ‚‚ F G] [TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)] (s' : Set (𝔓 X)) {c : Set (Set (𝔓 X))} (hc : c βŠ† rowDecomp_zornset s') (hc_chain : IsChain (fun (x1 x2 : Set (𝔓 X)) => x1 βŠ† x2) c) :
      ⋃ s ∈ c, s ∈ rowDecomp_zornset s' ∧ βˆ€ s ∈ c, s βŠ† ⋃ s'' ∈ c, s''
      @[irreducible]
      def TileStructure.Forest.rowDecomp_π”˜ {X : Type u_1} {a : β„•} {q : ℝ} {K : X β†’ X β†’ β„‚} {σ₁ Οƒβ‚‚ : X β†’ β„€} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ Οƒβ‚‚ F G] [TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)] {n : β„•} (t : Forest X n) (j : β„•) :
      Equations
      Instances For
        theorem TileStructure.Forest.rowDecomp_π”˜_def {X : Type u_1} {a : β„•} {q : ℝ} {K : X β†’ X β†’ β„‚} {σ₁ Οƒβ‚‚ : X β†’ β„€} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ Οƒβ‚‚ F G] [TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)] {n : β„•} (t : Forest X n) (j : β„•) :
        Maximal (fun (x : Set (𝔓 X)) => x ∈ rowDecomp_zornset (t.π”˜ \ ⋃ (i : β„•), ⋃ (_ : i < j), t.rowDecomp_π”˜ i)) (t.rowDecomp_π”˜ j)
        theorem TileStructure.Forest.rowDecomp_π”˜_mem_zornset {X : Type u_1} {a : β„•} {q : ℝ} {K : X β†’ X β†’ β„‚} {σ₁ Οƒβ‚‚ : X β†’ β„€} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ Οƒβ‚‚ F G] [TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)] {n : β„•} (t : Forest X n) (j : β„•) :
        t.rowDecomp_π”˜ j ∈ rowDecomp_zornset (t.π”˜ \ ⋃ (i : β„•), ⋃ (_ : i < j), t.rowDecomp_π”˜ i)
        theorem TileStructure.Forest.rowDecomp_π”˜_subset {X : Type u_1} {a : β„•} {q : ℝ} {K : X β†’ X β†’ β„‚} {σ₁ Οƒβ‚‚ : X β†’ β„€} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ Οƒβ‚‚ F G] [TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)] {n : β„•} (t : Forest X n) (j : β„•) :
        t.rowDecomp_π”˜ j βŠ† t.π”˜ \ ⋃ (i : β„•), ⋃ (_ : i < j), t.rowDecomp_π”˜ i
        theorem TileStructure.Forest.rowDecomp_π”˜_pairwiseDisjoint {X : Type u_1} {a : β„•} {q : ℝ} {K : X β†’ X β†’ β„‚} {σ₁ Οƒβ‚‚ : X β†’ β„€} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ Οƒβ‚‚ F G] [TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)] {n : β„•} (t : Forest X n) (j : β„•) :
        (t.rowDecomp_π”˜ j).PairwiseDisjoint fun (x : 𝔓 X) => ↑(π“˜ x)
        theorem TileStructure.Forest.mem_rowDecomp_π”˜_maximal {X : Type u_1} {a : β„•} {q : ℝ} {K : X β†’ X β†’ β„‚} {σ₁ Οƒβ‚‚ : X β†’ β„€} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ Οƒβ‚‚ F G] [TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)] {n : β„•} (t : Forest X n) (j : β„•) (x : 𝔓 X) :
        x ∈ t.rowDecomp_π”˜ j β†’ Maximal (fun (x : Grid X) => x ∈ π“˜ '' (t.π”˜ \ ⋃ (i : β„•), ⋃ (_ : i < j), t.rowDecomp_π”˜ i)) (π“˜ x)
        theorem TileStructure.Forest.rowDecomp_π”˜_subset_forest {X : Type u_1} {a : β„•} {q : ℝ} {K : X β†’ X β†’ β„‚} {σ₁ Οƒβ‚‚ : X β†’ β„€} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ Οƒβ‚‚ F G] [TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)] {n : β„•} (t : Forest X n) (j : β„•) :
        def TileStructure.Forest.rowDecomp {X : Type u_1} {a : β„•} {q : ℝ} {K : X β†’ X β†’ β„‚} {σ₁ Οƒβ‚‚ : X β†’ β„€} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ Οƒβ‚‚ F G] [TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)] {n : β„•} (t : Forest X n) (j : β„•) :
        Row X n

        The row-decomposition of a tree, defined in the proof of Lemma 7.7.1. The indexing is off-by-one compared to the blueprint.

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For
          theorem TileStructure.Forest.mem_forest_of_mem {X : Type u_1} {a : β„•} {q : ℝ} {K : X β†’ X β†’ β„‚} {σ₁ Οƒβ‚‚ : X β†’ β„€} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ Οƒβ‚‚ F G] [TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)] {n : β„•} {t : Forest X n} {j : β„•} {x : 𝔓 X} (hx : x ∈ t.rowDecomp j) :
          x ∈ t
          theorem TileStructure.Forest.rowDecomp_π”˜_eq {X : Type u_1} {a : β„•} {q : ℝ} {K : X β†’ X β†’ β„‚} {σ₁ Οƒβ‚‚ : X β†’ β„€} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ Οƒβ‚‚ F G] [TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)] {n : β„•} (t : Forest X n) (j : β„•) :
          theorem TileStructure.Forest.mem_rowDecomp_iff_mem_rowDecomp_π”˜ {X : Type u_1} {a : β„•} {q : ℝ} {K : X β†’ X β†’ β„‚} {σ₁ Οƒβ‚‚ : X β†’ β„€} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ Οƒβ‚‚ F G] [TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)] {n : β„•} (t : Forest X n) (j : β„•) (x : 𝔓 X) :
          theorem TileStructure.Forest.stackSize_remainder_ge_one_of_exists {X : Type u_1} {a : β„•} {q : ℝ} {K : X β†’ X β†’ β„‚} {σ₁ Οƒβ‚‚ : X β†’ β„€} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ Οƒβ‚‚ F G] [TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)] {n : β„•} (t : Forest X n) (j : β„•) (x : X) (hx : βˆƒ 𝔲' ∈ (t.rowDecomp j).π”˜, x ∈ π“˜ 𝔲') :
          1 ≀ stackSize ((t.π”˜ \ ⋃ (i : β„•), ⋃ (_ : i < j), (t.rowDecomp i).π”˜) ∩ (t.rowDecomp j).π”˜) x
          theorem TileStructure.Forest.remainder_stackSize_le {X : Type u_1} {a : β„•} {q : ℝ} {K : X β†’ X β†’ β„‚} {σ₁ Οƒβ‚‚ : X β†’ β„€} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ Οƒβ‚‚ F G] [TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)] {n : β„•} (t : Forest X n) (j : β„•) (x : X) :
          stackSize (t.π”˜ \ ⋃ (i : β„•), ⋃ (_ : i < j), (t.rowDecomp i).π”˜) x ≀ 2 ^ n - j
          @[simp]
          theorem TileStructure.Forest.biUnion_rowDecomp {X : Type u_1} {a : β„•} {q : ℝ} {K : X β†’ X β†’ β„‚} {σ₁ Οƒβ‚‚ : X β†’ β„€} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ Οƒβ‚‚ F G] [TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)] {n : β„•} {t : Forest X n} :
          ⋃ (j : β„•), ⋃ (_ : j < 2 ^ n), (t.rowDecomp j).π”˜ = t.π”˜

          Part of Lemma 7.7.1

          theorem TileStructure.Forest.pairwiseDisjoint_rowDecomp {X : Type u_1} {a : β„•} {q : ℝ} {K : X β†’ X β†’ β„‚} {σ₁ Οƒβ‚‚ : X β†’ β„€} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ Οƒβ‚‚ F G] [TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)] {n : β„•} {t : Forest X n} :
          (Set.Iio (2 ^ n)).PairwiseDisjoint fun (x : β„•) => (t.rowDecomp x).π”˜

          Part of Lemma 7.7.1

          @[simp]
          theorem TileStructure.Forest.rowDecomp_apply {X : Type u_1} {a : β„•} {q : ℝ} {K : X β†’ X β†’ β„‚} {σ₁ Οƒβ‚‚ : X β†’ β„€} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ Οƒβ‚‚ F G] [TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)] {n j : β„•} {t : Forest X n} {u : 𝔓 X} :
          (fun (x : 𝔓 X) => (t.rowDecomp j).𝔗 x) u = (fun (x : 𝔓 X) => t.𝔗 x) u
          def TileStructure.Forest.carlesonRowSum {X : Type u_1} {a : β„•} {q : ℝ} {K : X β†’ X β†’ β„‚} {σ₁ Οƒβ‚‚ : X β†’ β„€} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ Οƒβ‚‚ F G] [TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)] {n : β„•} (t : Forest X n) (j : β„•) (f : X β†’ β„‚) (x : X) :

          The definition of T_{β„œ_j}f(x), defined above Lemma 7.7.2.

          Equations
          Instances For
            def TileStructure.Forest.adjointCarlesonRowSum {X : Type u_1} {a : β„•} {q : ℝ} {K : X β†’ X β†’ β„‚} {σ₁ Οƒβ‚‚ : X β†’ β„€} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ Οƒβ‚‚ F G] [TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)] {n : β„•} (t : Forest X n) (j : β„•) (f : X β†’ β„‚) (x : X) :

            The definition of T_{β„œ_j}*f(x), defined above Lemma 7.7.2.

            Equations
            Instances For
              theorem TileStructure.Forest.adjointCarlesonRowSum_adjoint {X : Type u_1} {a : β„•} {q : ℝ} {K : X β†’ X β†’ β„‚} {σ₁ Οƒβ‚‚ : X β†’ β„€} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ Οƒβ‚‚ F G] [TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)] {n : β„•} {t : Forest X n} {f g : X β†’ β„‚} (hf : MeasureTheory.BoundedCompactSupport f MeasureTheory.volume) (hg : MeasureTheory.BoundedCompactSupport g MeasureTheory.volume) (j : β„•) :
              ∫ (x : X), (starRingEnd β„‚) (g x) * t.carlesonRowSum j f x = ∫ (x : X), (starRingEnd β„‚) (t.adjointCarlesonRowSum j g x) * f x

              adjointCarlesonRowSum is the adjoint of carlesonRowSum.

              theorem TileStructure.Forest.row_bound_common {X : Type u_1} {a : β„•} {q : ℝ} {K : X β†’ X β†’ β„‚} {σ₁ Οƒβ‚‚ : X β†’ β„€} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ Οƒβ‚‚ F G] [TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)] {n j : β„•} {t : Forest X n} {g : X β†’ β„‚} (hg : MeasureTheory.BoundedCompactSupport g MeasureTheory.volume) {A : Set X} (mA : MeasurableSet A) {C : ENNReal} (hC : βˆ€ u ∈ t.rowDecomp j, MeasureTheory.eLpNorm (A.indicator (adjointCarlesonSum ((fun (x : 𝔓 X) => t.𝔗 x) u) ((↑(π“˜ u)).indicator g))) 2 MeasureTheory.volume ≀ C * MeasureTheory.eLpNorm ((↑(π“˜ u)).indicator g) 2 MeasureTheory.volume) :

              Common proof structure for the two parts of Lemma 7.7.2.

              theorem TileStructure.Forest.C7_7_2_1_def (a n : β„•) :
              C7_7_2_1 a n = 2 ^ ((𝕔 + 7 + 𝕔 / 2 + 𝕔 / 4) * a ^ 3) * 2 ^ (-(↑n / 2))
              @[irreducible]

              The constant used in row_bound. Has value 2 ^ (182 * a ^ 3 - n / 2) in the blueprint.

              Equations
              Instances For
                theorem TileStructure.Forest.le_C7_7_2_1 {a n : β„•} (a4 : 4 ≀ a) :
                C7_3_1_1 a * (2 ^ (4 * ↑a - ↑n + 1)) ^ 2⁻¹ ≀ C7_7_2_1 a n
                theorem TileStructure.Forest.C7_7_2_2_def (a n : β„•) :
                C7_7_2_2 a n = 2 ^ ((2 * 𝕔 + 8 + 𝕔 / 2 + 𝕔 / 4) * a ^ 3) * 2 ^ (-(↑n / 2))
                @[irreducible]

                The constant used in indicator_row_bound. Has value 2 ^ (283 * a ^ 3 - n / 2) in the blueprint.

                Equations
                Instances For
                  theorem TileStructure.Forest.le_C7_7_2_2 {a n : β„•} (a4 : 4 ≀ a) :
                  C7_3_1_2 a * (2 ^ (4 * ↑a - ↑n + 1)) ^ 2⁻¹ ≀ C7_7_2_2 a n
                  theorem TileStructure.Forest.row_bound {X : Type u_1} {a : β„•} {q : ℝ} {K : X β†’ X β†’ β„‚} {σ₁ Οƒβ‚‚ : X β†’ β„€} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ Οƒβ‚‚ F G] [TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)] {n j : β„•} {t : Forest X n} {g : X β†’ β„‚} (hg : MeasureTheory.BoundedCompactSupport g MeasureTheory.volume) (h2g : Function.support g βŠ† G) :
                  theorem TileStructure.Forest.indicator_row_bound {X : Type u_1} {a : β„•} {q : ℝ} {K : X β†’ X β†’ β„‚} {σ₁ Οƒβ‚‚ : X β†’ β„€} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ Οƒβ‚‚ F G] [TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)] {n j : β„•} {t : Forest X n} {g : X β†’ β„‚} (hg : MeasureTheory.BoundedCompactSupport g MeasureTheory.volume) (h2g : Function.support g βŠ† G) :
                  theorem TileStructure.Forest.row_correlation_aux {X : Type u_1} {a : β„•} {q : ℝ} {K : X β†’ X β†’ β„‚} {σ₁ Οƒβ‚‚ : X β†’ β„€} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ Οƒβ‚‚ F G] [TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)] {n j j' : β„•} {t : Forest X n} {f : X β†’ β„‚} (hf : MeasureTheory.BoundedCompactSupport f MeasureTheory.volume) (nf : Function.support f βŠ† G) :
                  (βˆ‘ u : 𝔓 X with u ∈ t.rowDecomp j, βˆ‘ u' : 𝔓 X with u' ∈ t.rowDecomp j', MeasureTheory.eLpNorm (fun (x : X) => (↑(π“˜ u) ∩ ↑(π“˜ u')).indicator (t.adjointBoundaryOperator u ((↑(π“˜ u)).indicator f)) x) 2 MeasureTheory.volume ^ 2) ^ 2⁻¹ ≀ ↑(C7_4_3 a) * MeasureTheory.eLpNorm f 2 MeasureTheory.volume
                  @[irreducible]

                  The constant used in row_correlation. Has value 2 ^ (876 * a ^ 3 - 4 * n) in the blueprint.

                  Equations
                  Instances For
                    theorem TileStructure.Forest.row_correlation {X : Type u_1} {a : β„•} {q : ℝ} {K : X β†’ X β†’ β„‚} {σ₁ Οƒβ‚‚ : X β†’ β„€} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ Οƒβ‚‚ F G] [TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)] {n j j' : β„•} {t : Forest X n} {f₁ fβ‚‚ : X β†’ β„‚} (lj : j < 2 ^ n) (lj' : j' < 2 ^ n) (hn : j β‰  j') (hf₁ : MeasureTheory.BoundedCompactSupport f₁ MeasureTheory.volume) (nf₁ : Function.support f₁ βŠ† G) (hfβ‚‚ : MeasureTheory.BoundedCompactSupport fβ‚‚ MeasureTheory.volume) (nfβ‚‚ : Function.support fβ‚‚ βŠ† G) :

                    Lemma 7.7.3.

                    def TileStructure.Forest.rowSupport {X : Type u_1} {a : β„•} {q : ℝ} {K : X β†’ X β†’ β„‚} {σ₁ Οƒβ‚‚ : X β†’ β„€} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ Οƒβ‚‚ F G] [TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)] {n : β„•} (t : Forest X n) (j : β„•) :
                    Set X

                    The definition of Eβ±Ό defined above Lemma 7.7.4.

                    Equations
                    Instances For
                      theorem TileStructure.Forest.disjoint_impl {X : Type u_1} {a : β„•} {q : ℝ} {K : X β†’ X β†’ β„‚} {σ₁ Οƒβ‚‚ : X β†’ β„€} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ Οƒβ‚‚ F G] [TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)] {p p' : 𝔓 X} :
                      Disjoint (Ξ© p) (Ξ© p') β†’ Disjoint (E p) (E p')
                      theorem TileStructure.Forest.disjoint_of_ne_of_mem {X : Type u_1} {a : β„•} {q : ℝ} {K : X β†’ X β†’ β„‚} {σ₁ Οƒβ‚‚ : X β†’ β„€} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ Οƒβ‚‚ F G] [TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)] {n : β„•} {t : Forest X n} {i j : β„•} {u u' : 𝔓 X} (hne : u β‰  u') (hu : u ∈ t.rowDecomp i) (hu' : u' ∈ t.rowDecomp j) {p p' : 𝔓 X} (hp : p ∈ (fun (x : 𝔓 X) => t.𝔗 x) u) (hp' : p' ∈ (fun (x : 𝔓 X) => t.𝔗 x) u') :
                      Disjoint (E p) (E p')
                      theorem TileStructure.Forest.measurableSet_rowSupport {X : Type u_1} {a : β„•} {q : ℝ} {K : X β†’ X β†’ β„‚} {σ₁ Οƒβ‚‚ : X β†’ β„€} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ Οƒβ‚‚ F G] [TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)] {n j : β„•} {t : Forest X n} :
                      theorem TileStructure.Forest.pairwiseDisjoint_rowSupport {X : Type u_1} {a : β„•} {q : ℝ} {K : X β†’ X β†’ β„‚} {σ₁ Οƒβ‚‚ : X β†’ β„€} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ Οƒβ‚‚ F G] [TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)] {n : β„•} {t : Forest X n} :

                      Lemma 7.7.4

                      theorem TileStructure.Forest.forest_operator_g_prelude {X : Type u_1} {a : β„•} {q : ℝ} {K : X β†’ X β†’ β„‚} {σ₁ Οƒβ‚‚ : X β†’ β„€} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ Οƒβ‚‚ F G] [TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)] {n : β„•} {t : Forest X n} {f g : X β†’ β„‚} (hf : Measurable f) (h2f : βˆ€ (x : X), β€–f xβ€– ≀ F.indicator 1 x) (hg : Measurable g) (h2g : βˆ€ (x : X), β€–g xβ€– ≀ G.indicator 1 x) :
                      β€–βˆ« (x : X), (starRingEnd β„‚) (g x) * βˆ‘ u : 𝔓 X with u ∈ t, carlesonSum ((fun (x : 𝔓 X) => t.𝔗 x) u) f xβ€–β‚‘ ≀ MeasureTheory.eLpNorm f 2 MeasureTheory.volume * MeasureTheory.eLpNorm (fun (x : X) => βˆ‘ u : 𝔓 X with u ∈ t, adjointCarlesonSum ((fun (x : 𝔓 X) => t.𝔗 x) u) g x) 2 MeasureTheory.volume
                      theorem TileStructure.Forest.adjointCarlesonRowSum_rowSupport {X : Type u_1} {a : β„•} {q : ℝ} {K : X β†’ X β†’ β„‚} {σ₁ Οƒβ‚‚ : X β†’ β„€} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ Οƒβ‚‚ F G] [TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)] {n j : β„•} {t : Forest X n} {f : X β†’ β„‚} :

                      The constant on the g side of Proposition 2.0.4. Has value 2 ^ (440 * a ^ 3) in the blueprint.

                      Equations
                      Instances For
                        theorem TileStructure.Forest.le_sq_G2_0_4 {a n : β„•} (a4 : 4 ≀ a) :
                        C7_7_2_1 a n ^ 2 + C7_7_3 a n * 2 ^ n ≀ G2_0_4 a n ^ 2
                        theorem TileStructure.Forest.support_subset_of_norm_le_indicator {X : Type u_1} {f : X β†’ β„‚} {g : X β†’ ℝ} {A : Set X} (h2f : βˆ€ (x : X), β€–f xβ€– ≀ A.indicator g x) :
                        theorem TileStructure.Forest.forest_operator_g_main {X : Type u_1} {a : β„•} {q : ℝ} {K : X β†’ X β†’ β„‚} {σ₁ Οƒβ‚‚ : X β†’ β„€} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ Οƒβ‚‚ F G] [TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)] {n : β„•} {t : Forest X n} {g : X β†’ β„‚} (hg : Measurable g) (h2g : βˆ€ (x : X), β€–g xβ€– ≀ G.indicator 1 x) :
                        MeasureTheory.eLpNorm (fun (x : X) => βˆ‘ u : 𝔓 X with u ∈ t, adjointCarlesonSum ((fun (x : 𝔓 X) => t.𝔗 x) u) g x) 2 MeasureTheory.volume ^ 2 ≀ (↑(G2_0_4 a n) * MeasureTheory.eLpNorm g 2 MeasureTheory.volume) ^ 2
                        theorem TileStructure.Forest.forest_operator_g {X : Type u_1} {a : β„•} {q : ℝ} {K : X β†’ X β†’ β„‚} {σ₁ Οƒβ‚‚ : X β†’ β„€} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ Οƒβ‚‚ F G] [TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)] {n : β„•} {f g : X β†’ β„‚} (t : Forest X n) (hf : Measurable f) (h2f : βˆ€ (x : X), β€–f xβ€– ≀ F.indicator 1 x) (hg : Measurable g) (h2g : βˆ€ (x : X), β€–g xβ€– ≀ G.indicator 1 x) :

                        The g side of Proposition 2.0.4.

                        theorem TileStructure.Forest.carlesonRowSum_rowSupport {X : Type u_1} {a : β„•} {q : ℝ} {K : X β†’ X β†’ β„‚} {σ₁ Οƒβ‚‚ : X β†’ β„€} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ Οƒβ‚‚ F G] [TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)] {n j : β„•} {t : Forest X n} {f : X β†’ β„‚} :
                        theorem TileStructure.Forest.forest_operator_f_prelude {X : Type u_1} {a : β„•} {q : ℝ} {K : X β†’ X β†’ β„‚} {σ₁ Οƒβ‚‚ : X β†’ β„€} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ Οƒβ‚‚ F G] [TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)] {n : β„•} {t : Forest X n} {f g : X β†’ β„‚} (hf : Measurable f) (h2f : βˆ€ (x : X), β€–f xβ€– ≀ F.indicator 1 x) (hg : Measurable g) (h2g : βˆ€ (x : X), β€–g xβ€– ≀ G.indicator 1 x) :
                        β€–βˆ« (x : X), (starRingEnd β„‚) (g x) * βˆ‘ u : 𝔓 X with u ∈ t, carlesonSum ((fun (x : 𝔓 X) => t.𝔗 x) u) f xβ€–β‚‘ ≀ MeasureTheory.eLpNorm g 2 MeasureTheory.volume * MeasureTheory.eLpNorm (fun (x : X) => G.indicator (fun (x : X) => βˆ‘ u : 𝔓 X with u ∈ t, carlesonSum ((fun (x : 𝔓 X) => t.𝔗 x) u) f x) x) 2 MeasureTheory.volume
                        theorem TileStructure.Forest.forest_operator_f_inner {X : Type u_1} {a : β„•} {q : ℝ} {K : X β†’ X β†’ β„‚} {σ₁ Οƒβ‚‚ : X β†’ β„€} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ Οƒβ‚‚ F G] [TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)] {n j : β„•} {t : Forest X n} {f : X β†’ β„‚} (hf : Measurable f) (h2f : βˆ€ (x : X), β€–f xβ€– ≀ F.indicator 1 x) :

                        https://leanprover.zulipchat.com/#narrow/channel/442935-Carleson/topic/Problems.20in.20the.20forest.20operator.20proposition/near/522771057

                        The constant in the f side of Proposition 2.0.4. Has value 2 ^ (283 * a ^ 3) in the blueprint.

                        Equations
                        Instances For
                          theorem TileStructure.Forest.forest_operator_f_main {X : Type u_1} {a : β„•} {q : ℝ} {K : X β†’ X β†’ β„‚} {σ₁ Οƒβ‚‚ : X β†’ β„€} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ Οƒβ‚‚ F G] [TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)] {n : β„•} {t : Forest X n} {f : X β†’ β„‚} (hf : Measurable f) (h2f : βˆ€ (x : X), β€–f xβ€– ≀ F.indicator 1 x) :
                          MeasureTheory.eLpNorm (fun (x : X) => G.indicator (fun (x : X) => βˆ‘ u : 𝔓 X with u ∈ t, carlesonSum ((fun (x : 𝔓 X) => t.𝔗 x) u) f x) x) 2 MeasureTheory.volume ^ 2 ≀ (↑(C2_0_4_aux a) * densβ‚‚ (⋃ u ∈ t, (fun (x : 𝔓 X) => t.𝔗 x) u) ^ 2⁻¹ * MeasureTheory.eLpNorm f 2 MeasureTheory.volume) ^ 2
                          theorem TileStructure.Forest.forest_operator_f {X : Type u_1} {a : β„•} {q : ℝ} {K : X β†’ X β†’ β„‚} {σ₁ Οƒβ‚‚ : X β†’ β„€} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ Οƒβ‚‚ F G] [TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)] {n : β„•} {f g : X β†’ β„‚} (t : Forest X n) (hf : Measurable f) (h2f : βˆ€ (x : X), β€–f xβ€– ≀ F.indicator 1 x) (hg : Measurable g) (h2g : βˆ€ (x : X), β€–g xβ€– ≀ G.indicator 1 x) :
                          β€–βˆ« (x : X), (starRingEnd β„‚) (g x) * βˆ‘ u : 𝔓 X with u ∈ t, carlesonSum ((fun (x : 𝔓 X) => t.𝔗 x) u) f xβ€–β‚‘ ≀ ↑(C2_0_4_aux a) * densβ‚‚ (⋃ u ∈ t, (fun (x : 𝔓 X) => t.𝔗 x) u) ^ 2⁻¹ * MeasureTheory.eLpNorm f 2 MeasureTheory.volume * MeasureTheory.eLpNorm g 2 MeasureTheory.volume

                          The f side of Proposition 2.0.4.

                          Proposition 2.0.4 #

                          theorem C2_0_4_base_def (a : β„•) :
                          C2_0_4_base a = 2 ^ ((3 * 𝕔 + 15 + 5 * (𝕔 / 4)) * a ^ 3)
                          @[irreducible]
                          Equations
                          Instances For
                            @[irreducible]
                            def C2_0_4 (a : β„•) (q : ℝ) (n : β„•) :

                            The constant used in forest_operator. Has value 2 ^ (440 * a ^ 3 - (q - 1) / q * n) in the blueprint.

                            Equations
                            Instances For
                              theorem C2_0_4_def (a : β„•) (q : ℝ) (n : β„•) :
                              C2_0_4 a q n = C2_0_4_base a * 2 ^ (-(q - 1) / q * ↑n)
                              theorem forest_operator {X : Type u_1} {a : β„•} {q : ℝ} {K : X β†’ X β†’ β„‚} {σ₁ Οƒβ‚‚ : X β†’ β„€} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ Οƒβ‚‚ F G] [TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)] {n : β„•} (𝔉 : TileStructure.Forest X n) {f g : X β†’ β„‚} (hf : Measurable f) (h2f : βˆ€ (x : X), β€–f xβ€– ≀ F.indicator 1 x) (hg : Measurable g) (h2g : βˆ€ (x : X), β€–g xβ€– ≀ G.indicator 1 x) :
                              β€–βˆ« (x : X), (starRingEnd β„‚) (g x) * βˆ‘ u : 𝔓 X with u ∈ 𝔉, carlesonSum ((fun (x : 𝔓 X) => 𝔉.𝔗 x) u) f xβ€–β‚‘ ≀ ↑(C2_0_4 a q n) * densβ‚‚ (⋃ u ∈ 𝔉, (fun (x : 𝔓 X) => 𝔉.𝔗 x) u) ^ (q⁻¹ - 2⁻¹) * MeasureTheory.eLpNorm f 2 MeasureTheory.volume * MeasureTheory.eLpNorm g 2 MeasureTheory.volume
                              theorem forest_operator' {X : Type u_1} {a : β„•} {q : ℝ} {K : X β†’ X β†’ β„‚} {σ₁ Οƒβ‚‚ : X β†’ β„€} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ Οƒβ‚‚ F G] [TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)] {n : β„•} (𝔉 : TileStructure.Forest X n) {f : X β†’ β„‚} {A : Set X} (hf : Measurable f) (h2f : βˆ€ (x : X), β€–f xβ€– ≀ F.indicator 1 x) (hA : MeasurableSet A) (sA : A βŠ† G) :
                              ∫⁻ (x : X) in A, β€–βˆ‘ u : 𝔓 X with u ∈ 𝔉, carlesonSum ((fun (x : 𝔓 X) => 𝔉.𝔗 x) u) f xβ€–β‚‘ ≀ ↑(C2_0_4 a q n) * densβ‚‚ (⋃ u ∈ 𝔉, (fun (x : 𝔓 X) => 𝔉.𝔗 x) u) ^ (q⁻¹ - 2⁻¹) * MeasureTheory.eLpNorm f 2 MeasureTheory.volume * MeasureTheory.volume A ^ (1 / 2)

                              Version of the forest operator theorem, but controlling the integral of the norm instead of the integral of the function multiplied by another function.

                              theorem forest_operator_le_volume {X : Type u_1} {a : β„•} {q : ℝ} {K : X β†’ X β†’ β„‚} {σ₁ Οƒβ‚‚ : X β†’ β„€} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ Οƒβ‚‚ F G] [TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)] {n : β„•} (𝔉 : TileStructure.Forest X n) {f : X β†’ β„‚} {A : Set X} (hf : Measurable f) (h2f : βˆ€ (x : X), β€–f xβ€– ≀ F.indicator 1 x) (hA : MeasurableSet A) (sA : A βŠ† G) :
                              ∫⁻ (x : X) in A, β€–βˆ‘ u : 𝔓 X with u ∈ 𝔉, carlesonSum ((fun (x : 𝔓 X) => 𝔉.𝔗 x) u) f xβ€–β‚‘ ≀ ↑(C2_0_4 a q n) * densβ‚‚ (⋃ u ∈ 𝔉, (fun (x : 𝔓 X) => 𝔉.𝔗 x) u) ^ (q⁻¹ - 2⁻¹) * MeasureTheory.volume F ^ (1 / 2) * MeasureTheory.volume A ^ (1 / 2)

                              Version of the forest operator theorem, but controlling the integral of the norm instead of the integral of the function multiplied by another function, and with the upper bound in terms of volume F and volume G.