Documentation

Carleson.ForestOperator.Forests

Lemmas 7.4.4 #

theorem TileStructure.Forest.C7_4_4_def (a n : ) :
C7_4_4 a n = 2 ^ (550 * a ^ 3 - 3 * n)
@[irreducible]

The constant used in correlation_separated_trees. Has value 2 ^ (550 * a ^ 3 - 3 * n) in the blueprint.

Equations
Instances For
    theorem TileStructure.Forest.correlation_separated_trees_of_subset {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {n : } {t : Forest X n} {u₁ u₂ : 𝔓 X} {f₁ f₂ g₁ g₂ : X} (hu₁ : u₁ t) (hu₂ : u₂ t) (hu : u₁ u₂) (h2u : 𝓘 u₁ 𝓘 u₂) (hf₁ : Bornology.IsBounded (Set.range f₁)) (h2f₁ : HasCompactSupport f₁) (hf₂ : Bornology.IsBounded (Set.range f₂)) (h2f₂ : HasCompactSupport f₂) :
    ∫ (x : X), adjointCarlesonSum ((fun (x : 𝔓 X) => t.𝔗 x) u₁) g₁ x * (starRingEnd ) (adjointCarlesonSum ((fun (x : 𝔓 X) => t.𝔗 x) u₂) g₂ x)‖₊ (C7_4_4 a n) * MeasureTheory.eLpNorm (fun (x : X) => (((𝓘 u₁) (𝓘 u₂)).indicator (t.adjointBoundaryOperator u₁ g₁) x).toReal) 2 MeasureTheory.volume * MeasureTheory.eLpNorm (fun (x : X) => (((𝓘 u₁) (𝓘 u₂)).indicator (t.adjointBoundaryOperator u₂ g₂) x).toReal) 2 MeasureTheory.volume
    theorem TileStructure.Forest.correlation_separated_trees {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {n : } {t : Forest X n} {u₁ u₂ : 𝔓 X} {f₁ f₂ g₁ g₂ : X} (hu₁ : u₁ t) (hu₂ : u₂ t) (hu : u₁ u₂) (hf₁ : Bornology.IsBounded (Set.range f₁)) (h2f₁ : HasCompactSupport f₁) (hf₂ : Bornology.IsBounded (Set.range f₂)) (h2f₂ : HasCompactSupport f₂) :
    ∫ (x : X), adjointCarlesonSum ((fun (x : 𝔓 X) => t.𝔗 x) u₁) g₁ x * (starRingEnd ) (adjointCarlesonSum ((fun (x : 𝔓 X) => t.𝔗 x) u₂) g₂ x)‖₊ (C7_4_4 a n) * MeasureTheory.eLpNorm (fun (x : X) => (((𝓘 u₁) (𝓘 u₂)).indicator (t.adjointBoundaryOperator u₁ g₁) x).toReal) 2 MeasureTheory.volume * MeasureTheory.eLpNorm (fun (x : X) => (((𝓘 u₁) (𝓘 u₂)).indicator (t.adjointBoundaryOperator u₂ g₂) x).toReal) 2 MeasureTheory.volume

    Lemma 7.4.4.

    Section 7.7 #

    def TileStructure.Forest.rowDecomp {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {n : } (t : Forest X n) (j : ) :
    Row X n

    The row-decomposition of a tree, defined in the proof of Lemma 7.7.1. The indexing is off-by-one compared to the blueprint.

    Equations
    • t.rowDecomp j = sorry
    Instances For
      @[simp]
      theorem TileStructure.Forest.biUnion_rowDecomp {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {n : } {t : Forest X n} :
      ⋃ (j : ), ⋃ (_ : j < 2 ^ n), (t.rowDecomp j).𝔘 = t.𝔘

      Part of Lemma 7.7.1

      theorem TileStructure.Forest.pairwiseDisjoint_rowDecomp {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {n : } {t : Forest X n} :
      (Set.Iio (2 ^ n)).PairwiseDisjoint fun (x : ) => (t.rowDecomp x).𝔘

      Part of Lemma 7.7.1

      @[simp]
      theorem TileStructure.Forest.rowDecomp_apply {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {n j : } {t : Forest X n} {u : 𝔓 X} :
      (fun (x : 𝔓 X) => (t.rowDecomp j).𝔗 x) u = (fun (x : 𝔓 X) => t.𝔗 x) u
      @[irreducible]

      The constant used in row_bound. Has value 2 ^ (156 * a ^ 3 - n / 2) in the blueprint.

      Equations
      Instances For
        theorem TileStructure.Forest.C7_7_2_1_def (a n : ) :
        C7_7_2_1 a n = 2 ^ (156 * a ^ 3 - n / 2)
        @[irreducible]

        The constant used in indicator_row_bound. Has value 2 ^ (257 * a ^ 3 - n / 2) in the blueprint.

        Equations
        Instances For
          theorem TileStructure.Forest.C7_7_2_2_def (a n : ) :
          C7_7_2_2 a n = 2 ^ (257 * a ^ 3 - n / 2)
          theorem TileStructure.Forest.row_bound {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {n j : } {t : Forest X n} {f : X} (hj : j < 2 ^ n) (hf : MeasureTheory.BoundedCompactSupport f) :
          MeasureTheory.eLpNorm (∑ uFinset.filter (fun (p : 𝔓 X) => p t.rowDecomp j) Finset.univ, adjointCarlesonSum ((fun (x : 𝔓 X) => t.𝔗 x) u) f) 2 MeasureTheory.volume (C7_7_2_1 a n) * MeasureTheory.eLpNorm f 2 MeasureTheory.volume

          Part of Lemma 7.7.2.

          theorem TileStructure.Forest.indicator_row_bound {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {n j : } {t : Forest X n} {u : 𝔓 X} {f : X} (hj : j < 2 ^ n) (hf : MeasureTheory.BoundedCompactSupport f) :
          MeasureTheory.eLpNorm ((∑ uFinset.filter (fun (p : 𝔓 X) => p t.rowDecomp j) Finset.univ, F.indicator) (adjointCarlesonSum ((fun (x : 𝔓 X) => t.𝔗 x) u) f)) 2 MeasureTheory.volume (C7_7_2_2 a n) * dens₂ (⋃ ut, (fun (x : 𝔓 X) => t.𝔗 x) u) ^ 2⁻¹ * MeasureTheory.eLpNorm f 2 MeasureTheory.volume

          Part of Lemma 7.7.2.

          theorem TileStructure.Forest.C7_7_3_def (a n : ) :
          C7_7_3 a n = 2 ^ (862 * a ^ 3 - 2 * n)
          @[irreducible]

          The constant used in row_correlation. Has value 2 ^ (862 * a ^ 3 - 3 * n) in the blueprint.

          Equations
          Instances For
            theorem TileStructure.Forest.row_correlation {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {n j j' : } {t : Forest X n} {f₁ f₂ : X} (hjj' : j < j') (hj' : j' < 2 ^ n) (hf₁ : Bornology.IsBounded (Set.range f₁)) (h2f₁ : HasCompactSupport f₁) (hf₂ : Bornology.IsBounded (Set.range f₂)) (h2f₂ : HasCompactSupport f₂) :
            ∫ (x : X), (∑ uFinset.filter (fun (p : 𝔓 X) => p t.rowDecomp j) Finset.univ, adjointCarlesonSum ((fun (x : 𝔓 X) => t.𝔗 x) u) f₁ x) * uFinset.filter (fun (p : 𝔓 X) => p t.rowDecomp j') Finset.univ, adjointCarlesonSum ((fun (x : 𝔓 X) => t.𝔗 x) u) f₂ x‖₊ (C7_7_3 a n) * MeasureTheory.eLpNorm f₁ 2 MeasureTheory.volume * MeasureTheory.eLpNorm f₂ 2 MeasureTheory.volume

            Lemma 7.7.3.

            def TileStructure.Forest.rowSupport {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {n : } (t : Forest X n) (j : ) :
            Set X

            The definition of Eⱼ defined above Lemma 7.7.4.

            Equations
            • t.rowSupport j = ut.rowDecomp j, p(fun (x : 𝔓 X) => t.𝔗 x) u, E p
            Instances For
              theorem TileStructure.Forest.pairwiseDisjoint_rowSupport {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {n : } {t : Forest X n} :
              (Set.Iio (2 ^ n)).PairwiseDisjoint t.rowSupport

              Lemma 7.7.4

              Proposition 2.0.4 #

              @[irreducible]
              Equations
              Instances For
                theorem C2_0_4_base_def (a : ) :
                C2_0_4_base a = 2 ^ (432 * a ^ 3)
                @[irreducible]
                def C2_0_4 (a q : ) (n : ) :

                The constant used in forest_operator. Has value 2 ^ (432 * a ^ 3 - (q - 1) / q * n) in the blueprint.

                Equations
                Instances For
                  theorem C2_0_4_def (a q : ) (n : ) :
                  C2_0_4 a q n = C2_0_4_base a * 2 ^ (-(q - 1) / q * n)
                  theorem forest_operator {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {n : } (𝔉 : TileStructure.Forest X n) {f g : X} (hf : Measurable f) (h2f : ∀ (x : X), f x F.indicator 1 x) (hg : Measurable g) (h2g : Bornology.IsBounded (Function.support g)) :
                  ∫ (x : X), (starRingEnd ) (g x) * uFinset.filter (fun (p : 𝔓 X) => p 𝔉) Finset.univ, carlesonSum ((fun (x : 𝔓 X) => 𝔉.𝔗 x) u) f x‖₊ (C2_0_4 (↑a) q n) * dens₂ (⋃ u𝔉, (fun (x : 𝔓 X) => 𝔉.𝔗 x) u) ^ (q⁻¹ - 2⁻¹) * MeasureTheory.eLpNorm f 2 MeasureTheory.volume * MeasureTheory.eLpNorm g 2 MeasureTheory.volume
                  theorem forest_operator' {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {n : } (𝔉 : TileStructure.Forest X n) {f : X} {A : Set X} (hf : Measurable f) (h2f : ∀ (x : X), f x F.indicator 1 x) (hA : MeasurableSet A) (h'A : Bornology.IsBounded A) :
                  ∫⁻ (x : X) in A, uFinset.filter (fun (p : 𝔓 X) => p 𝔉) Finset.univ, carlesonSum ((fun (x : 𝔓 X) => 𝔉.𝔗 x) u) f x‖₊ (C2_0_4 (↑a) q n) * dens₂ (⋃ u𝔉, (fun (x : 𝔓 X) => 𝔉.𝔗 x) u) ^ (q⁻¹ - 2⁻¹) * MeasureTheory.eLpNorm f 2 MeasureTheory.volume * MeasureTheory.volume A ^ (1 / 2)

                  Version of the forest operator theorem, but controlling the integral of the norm instead of the integral of the function multiplied by another function.

                  theorem forest_operator_le_volume {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {n : } (𝔉 : TileStructure.Forest X n) {f : X} {A : Set X} (hf : Measurable f) (h2f : ∀ (x : X), f x F.indicator 1 x) (hA : MeasurableSet A) (h'A : Bornology.IsBounded A) :
                  ∫⁻ (x : X) in A, uFinset.filter (fun (p : 𝔓 X) => p 𝔉) Finset.univ, carlesonSum ((fun (x : 𝔓 X) => 𝔉.𝔗 x) u) f x‖₊ (C2_0_4 (↑a) q n) * dens₂ (⋃ u𝔉, (fun (x : 𝔓 X) => 𝔉.𝔗 x) u) ^ (q⁻¹ - 2⁻¹) * MeasureTheory.volume F ^ (1 / 2) * MeasureTheory.volume A ^ (1 / 2)

                  Version of the forest operator theorem, but controlling the integral of the norm instead of the integral of the function multiplied by another function, and with the upper bound in terms of volume F and volume G.