Documentation

Carleson.ForestOperator.Forests

Lemmas 7.4.4 #

theorem TileStructure.Forest.C7_4_4_def (a n : ) :
TileStructure.Forest.C7_4_4 a n = 2 ^ (550 * a ^ 3 - 3 * n)
@[irreducible]

The constant used in correlation_separated_trees. Has value 2 ^ (550 * a ^ 3 - 3 * n) in the blueprint.

Equations
Instances For
    theorem TileStructure.Forest.correlation_separated_trees_of_subset {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {n : } {t : TileStructure.Forest X n} {u₁ u₂ : 𝔓 X} {f₁ f₂ g₁ g₂ : X} (hu₁ : u₁ t) (hu₂ : u₂ t) (hu : u₁ u₂) (h2u : 𝓘 u₁ 𝓘 u₂) (hf₁ : Bornology.IsBounded (Set.range f₁)) (h2f₁ : HasCompactSupport f₁) (hf₂ : Bornology.IsBounded (Set.range f₂)) (h2f₂ : HasCompactSupport f₂) :
    ∫ (x : X), TileStructure.Forest.adjointCarlesonSum ((fun (x : 𝔓 X) => t.𝔗 x) u₁) g₁ x * (starRingEnd ) (TileStructure.Forest.adjointCarlesonSum ((fun (x : 𝔓 X) => t.𝔗 x) u₂) g₂ x)‖₊ (TileStructure.Forest.C7_4_4 a n) * MeasureTheory.eLpNorm (fun (x : X) => (((𝓘 u₁) (𝓘 u₂)).indicator (t.adjointBoundaryOperator u₁ g₁) x).toReal) 2 MeasureTheory.volume * MeasureTheory.eLpNorm (fun (x : X) => (((𝓘 u₁) (𝓘 u₂)).indicator (t.adjointBoundaryOperator u₂ g₂) x).toReal) 2 MeasureTheory.volume
    theorem TileStructure.Forest.correlation_separated_trees {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {n : } {t : TileStructure.Forest X n} {u₁ u₂ : 𝔓 X} {f₁ f₂ g₁ g₂ : X} (hu₁ : u₁ t) (hu₂ : u₂ t) (hu : u₁ u₂) (hf₁ : Bornology.IsBounded (Set.range f₁)) (h2f₁ : HasCompactSupport f₁) (hf₂ : Bornology.IsBounded (Set.range f₂)) (h2f₂ : HasCompactSupport f₂) :
    ∫ (x : X), TileStructure.Forest.adjointCarlesonSum ((fun (x : 𝔓 X) => t.𝔗 x) u₁) g₁ x * (starRingEnd ) (TileStructure.Forest.adjointCarlesonSum ((fun (x : 𝔓 X) => t.𝔗 x) u₂) g₂ x)‖₊ (TileStructure.Forest.C7_4_4 a n) * MeasureTheory.eLpNorm (fun (x : X) => (((𝓘 u₁) (𝓘 u₂)).indicator (t.adjointBoundaryOperator u₁ g₁) x).toReal) 2 MeasureTheory.volume * MeasureTheory.eLpNorm (fun (x : X) => (((𝓘 u₁) (𝓘 u₂)).indicator (t.adjointBoundaryOperator u₂ g₂) x).toReal) 2 MeasureTheory.volume

    Lemma 7.4.4.

    Section 7.7 #

    def TileStructure.Forest.rowDecomp {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {n : } (t : TileStructure.Forest X n) (j : ) :

    The row-decomposition of a tree, defined in the proof of Lemma 7.7.1. The indexing is off-by-one compared to the blueprint.

    Equations
    • t.rowDecomp j = sorry
    Instances For
      @[simp]
      theorem TileStructure.Forest.biUnion_rowDecomp {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {n : } {t : TileStructure.Forest X n} :
      ⋃ (j : ), ⋃ (_ : j < 2 ^ n), (t.rowDecomp j).𝔘 = t.𝔘

      Part of Lemma 7.7.1

      theorem TileStructure.Forest.pairwiseDisjoint_rowDecomp {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {n : } {t : TileStructure.Forest X n} :
      (Set.Iio (2 ^ n)).PairwiseDisjoint fun (x : ) => (t.rowDecomp x).𝔘

      Part of Lemma 7.7.1

      @[simp]
      theorem TileStructure.Forest.rowDecomp_apply {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {n j : } {t : TileStructure.Forest X n} {u : 𝔓 X} :
      (fun (x : 𝔓 X) => (t.rowDecomp j).𝔗 x) u = (fun (x : 𝔓 X) => t.𝔗 x) u
      @[irreducible]

      The constant used in row_bound. Has value 2 ^ (156 * a ^ 3 - n / 2) in the blueprint.

      Equations
      Instances For
        @[irreducible]

        The constant used in indicator_row_bound. Has value 2 ^ (257 * a ^ 3 - n / 2) in the blueprint.

        Equations
        Instances For
          theorem TileStructure.Forest.row_bound {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {n j : } {t : TileStructure.Forest X n} {f : X} (hj : j < 2 ^ n) (hf : MeasureTheory.BoundedCompactSupport f) :
          MeasureTheory.eLpNorm (∑ uFinset.filter (fun (p : 𝔓 X) => p t.rowDecomp j) Finset.univ, TileStructure.Forest.adjointCarlesonSum ((fun (x : 𝔓 X) => t.𝔗 x) u) f) 2 MeasureTheory.volume (TileStructure.Forest.C7_7_2_1 a n) * MeasureTheory.eLpNorm f 2 MeasureTheory.volume

          Part of Lemma 7.7.2.

          theorem TileStructure.Forest.indicator_row_bound {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {n j : } {t : TileStructure.Forest X n} {u : 𝔓 X} {f : X} (hj : j < 2 ^ n) (hf : MeasureTheory.BoundedCompactSupport f) :
          MeasureTheory.eLpNorm ((∑ uFinset.filter (fun (p : 𝔓 X) => p t.rowDecomp j) Finset.univ, F.indicator) (TileStructure.Forest.adjointCarlesonSum ((fun (x : 𝔓 X) => t.𝔗 x) u) f)) 2 MeasureTheory.volume (TileStructure.Forest.C7_7_2_2 a n) * dens₂ (⋃ ut, (fun (x : 𝔓 X) => t.𝔗 x) u) ^ 2⁻¹ * MeasureTheory.eLpNorm f 2 MeasureTheory.volume

          Part of Lemma 7.7.2.

          theorem TileStructure.Forest.C7_7_3_def (a n : ) :
          TileStructure.Forest.C7_7_3 a n = 2 ^ (862 * a ^ 3 - 2 * n)
          @[irreducible]

          The constant used in row_correlation. Has value 2 ^ (862 * a ^ 3 - 3 * n) in the blueprint.

          Equations
          Instances For
            theorem TileStructure.Forest.row_correlation {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {n j j' : } {t : TileStructure.Forest X n} {f₁ f₂ : X} (hjj' : j < j') (hj' : j' < 2 ^ n) (hf₁ : Bornology.IsBounded (Set.range f₁)) (h2f₁ : HasCompactSupport f₁) (hf₂ : Bornology.IsBounded (Set.range f₂)) (h2f₂ : HasCompactSupport f₂) :
            ∫ (x : X), (∑ uFinset.filter (fun (p : 𝔓 X) => p t.rowDecomp j) Finset.univ, TileStructure.Forest.adjointCarlesonSum ((fun (x : 𝔓 X) => t.𝔗 x) u) f₁ x) * uFinset.filter (fun (p : 𝔓 X) => p t.rowDecomp j') Finset.univ, TileStructure.Forest.adjointCarlesonSum ((fun (x : 𝔓 X) => t.𝔗 x) u) f₂ x‖₊ (TileStructure.Forest.C7_7_3 a n) * MeasureTheory.eLpNorm f₁ 2 MeasureTheory.volume * MeasureTheory.eLpNorm f₂ 2 MeasureTheory.volume

            Lemma 7.7.3.

            def TileStructure.Forest.rowSupport {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {n : } (t : TileStructure.Forest X n) (j : ) :
            Set X

            The definition of Eⱼ defined above Lemma 7.7.4.

            Equations
            • t.rowSupport j = ut.rowDecomp j, p(fun (x : 𝔓 X) => t.𝔗 x) u, E p
            Instances For
              theorem TileStructure.Forest.pairwiseDisjoint_rowSupport {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {n : } {t : TileStructure.Forest X n} :
              (Set.Iio (2 ^ n)).PairwiseDisjoint t.rowSupport

              Lemma 7.7.4

              Proposition 2.0.4 #

              @[irreducible]
              def C2_0_4 (a q : ) (n : ) :

              The constant used in forest_operator. Has value 2 ^ (432 * a ^ 3 - (q - 1) / q * n) in the blueprint.

              Equations
              Instances For
                theorem C2_0_4_def (a q : ) (n : ) :
                C2_0_4 a q n = 2 ^ (432 * a ^ 3 - (q - 1) / q * n)
                theorem forest_operator {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {n : } (𝔉 : TileStructure.Forest X n) {f g : X} (hf : Measurable f) (h2f : ∀ (x : X), f x F.indicator 1 x) (hg : Measurable g) (h2g : Bornology.IsBounded (Function.support g)) :
                ∫ (x : X), (starRingEnd ) (g x) * uFinset.filter (fun (p : 𝔓 X) => p 𝔉) Finset.univ, carlesonSum ((fun (x : 𝔓 X) => 𝔉.𝔗 x) u) f x‖₊ (C2_0_4 (↑a) q n) * dens₂ (⋃ u𝔉, (fun (x : 𝔓 X) => 𝔉.𝔗 x) u) ^ (q⁻¹ - 2⁻¹) * MeasureTheory.eLpNorm f 2 MeasureTheory.volume * MeasureTheory.eLpNorm g 2 MeasureTheory.volume