Documentation

Carleson.ForestOperator.Forests

Lemmas 7.4.4 #

theorem TileStructure.Forest.C7_4_4_def (a n : β„•) :
C7_4_4 a n = 2 ^ (550 * ↑a ^ 3 - 3 * ↑n)
@[irreducible]

The constant used in correlation_separated_trees. Has value 2 ^ (550 * a ^ 3 - 3 * n) in the blueprint.

Equations
theorem TileStructure.Forest.correlation_separated_trees_of_subset {X : Type u_1} {a : β„•} {q : ℝ} {K : X β†’ X β†’ β„‚} {σ₁ Οƒβ‚‚ : X β†’ β„€} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ Οƒβ‚‚ F G] [TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)] {n : β„•} {t : Forest X n} {u₁ uβ‚‚ : 𝔓 X} {f₁ fβ‚‚ g₁ gβ‚‚ : X β†’ β„‚} (hu₁ : u₁ ∈ t) (huβ‚‚ : uβ‚‚ ∈ t) (hu : u₁ β‰  uβ‚‚) (h2u : π“˜ u₁ ≀ π“˜ uβ‚‚) (hf₁ : Bornology.IsBounded (Set.range f₁)) (h2f₁ : HasCompactSupport f₁) (hfβ‚‚ : Bornology.IsBounded (Set.range fβ‚‚)) (h2fβ‚‚ : HasCompactSupport fβ‚‚) :
β†‘β€–βˆ« (x : X), adjointCarlesonSum ((fun (x : 𝔓 X) => t.𝔗 x) u₁) g₁ x * (starRingEnd β„‚) (adjointCarlesonSum ((fun (x : 𝔓 X) => t.𝔗 x) uβ‚‚) gβ‚‚ x)β€–β‚Š ≀ ↑(C7_4_4 a n) * MeasureTheory.eLpNorm (fun (x : X) => (↑(π“˜ u₁) ∩ ↑(π“˜ uβ‚‚)).indicator (t.adjointBoundaryOperator u₁ g₁) x) 2 MeasureTheory.volume * MeasureTheory.eLpNorm (fun (x : X) => (↑(π“˜ u₁) ∩ ↑(π“˜ uβ‚‚)).indicator (t.adjointBoundaryOperator uβ‚‚ gβ‚‚) x) 2 MeasureTheory.volume
theorem TileStructure.Forest.correlation_separated_trees {X : Type u_1} {a : β„•} {q : ℝ} {K : X β†’ X β†’ β„‚} {σ₁ Οƒβ‚‚ : X β†’ β„€} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ Οƒβ‚‚ F G] [TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)] {n : β„•} {t : Forest X n} {u₁ uβ‚‚ : 𝔓 X} {f₁ fβ‚‚ g₁ gβ‚‚ : X β†’ β„‚} (hu₁ : u₁ ∈ t) (huβ‚‚ : uβ‚‚ ∈ t) (hu : u₁ β‰  uβ‚‚) (hf₁ : Bornology.IsBounded (Set.range f₁)) (h2f₁ : HasCompactSupport f₁) (hfβ‚‚ : Bornology.IsBounded (Set.range fβ‚‚)) (h2fβ‚‚ : HasCompactSupport fβ‚‚) :
β†‘β€–βˆ« (x : X), adjointCarlesonSum ((fun (x : 𝔓 X) => t.𝔗 x) u₁) g₁ x * (starRingEnd β„‚) (adjointCarlesonSum ((fun (x : 𝔓 X) => t.𝔗 x) uβ‚‚) gβ‚‚ x)β€–β‚Š ≀ ↑(C7_4_4 a n) * MeasureTheory.eLpNorm (fun (x : X) => (↑(π“˜ u₁) ∩ ↑(π“˜ uβ‚‚)).indicator (t.adjointBoundaryOperator u₁ g₁) x) 2 MeasureTheory.volume * MeasureTheory.eLpNorm (fun (x : X) => (↑(π“˜ u₁) ∩ ↑(π“˜ uβ‚‚)).indicator (t.adjointBoundaryOperator uβ‚‚ gβ‚‚) x) 2 MeasureTheory.volume

Lemma 7.4.4.

Section 7.7 #

def TileStructure.Forest.rowDecomp_zornset {X : Type u_1} {a : β„•} {q : ℝ} {K : X β†’ X β†’ β„‚} {σ₁ Οƒβ‚‚ : X β†’ β„€} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ Οƒβ‚‚ F G] [TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)] (s : Set (𝔓 X)) :
Equations
  • One or more equations did not get rendered due to their size.
theorem TileStructure.Forest.mem_rowDecomp_zornset_iff {X : Type u_1} {a : β„•} {q : ℝ} {K : X β†’ X β†’ β„‚} {σ₁ Οƒβ‚‚ : X β†’ β„€} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ Οƒβ‚‚ F G] [TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)] (s s' : Set (𝔓 X)) :
s' ∈ rowDecomp_zornset s ↔ s' βŠ† s ∧ (s'.PairwiseDisjoint fun (x : 𝔓 X) => ↑(π“˜ x)) ∧ βˆ€ u ∈ s', Maximal (fun (x : Grid X) => x ∈ π“˜ '' s) (π“˜ u)
theorem TileStructure.Forest.rowDecomp_zornset_chain_Union_bound {X : Type u_1} {a : β„•} {q : ℝ} {K : X β†’ X β†’ β„‚} {σ₁ Οƒβ‚‚ : X β†’ β„€} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ Οƒβ‚‚ F G] [TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)] (s' : Set (𝔓 X)) {c : Set (Set (𝔓 X))} (hc : c βŠ† rowDecomp_zornset s') (hc_chain : IsChain (fun (x1 x2 : Set (𝔓 X)) => x1 βŠ† x2) c) :
⋃ s ∈ c, s ∈ rowDecomp_zornset s' ∧ βˆ€ s ∈ c, s βŠ† ⋃ s'' ∈ c, s''
@[irreducible]
def TileStructure.Forest.rowDecomp_π”˜ {X : Type u_1} {a : β„•} {q : ℝ} {K : X β†’ X β†’ β„‚} {σ₁ Οƒβ‚‚ : X β†’ β„€} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ Οƒβ‚‚ F G] [TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)] {n : β„•} (t : Forest X n) (j : β„•) :
Equations
theorem TileStructure.Forest.rowDecomp_π”˜_def {X : Type u_1} {a : β„•} {q : ℝ} {K : X β†’ X β†’ β„‚} {σ₁ Οƒβ‚‚ : X β†’ β„€} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ Οƒβ‚‚ F G] [TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)] {n : β„•} (t : Forest X n) (j : β„•) :
Maximal (fun (x : Set (𝔓 X)) => x ∈ rowDecomp_zornset (t.π”˜ \ ⋃ (i : β„•), ⋃ (_ : i < j), t.rowDecomp_π”˜ i)) (t.rowDecomp_π”˜ j)
theorem TileStructure.Forest.rowDecomp_π”˜_mem_zornset {X : Type u_1} {a : β„•} {q : ℝ} {K : X β†’ X β†’ β„‚} {σ₁ Οƒβ‚‚ : X β†’ β„€} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ Οƒβ‚‚ F G] [TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)] {n : β„•} (t : Forest X n) (j : β„•) :
t.rowDecomp_π”˜ j ∈ rowDecomp_zornset (t.π”˜ \ ⋃ (i : β„•), ⋃ (_ : i < j), t.rowDecomp_π”˜ i)
theorem TileStructure.Forest.rowDecomp_π”˜_subset {X : Type u_1} {a : β„•} {q : ℝ} {K : X β†’ X β†’ β„‚} {σ₁ Οƒβ‚‚ : X β†’ β„€} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ Οƒβ‚‚ F G] [TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)] {n : β„•} (t : Forest X n) (j : β„•) :
t.rowDecomp_π”˜ j βŠ† t.π”˜ \ ⋃ (i : β„•), ⋃ (_ : i < j), t.rowDecomp_π”˜ i
theorem TileStructure.Forest.rowDecomp_π”˜_pairwiseDisjoint {X : Type u_1} {a : β„•} {q : ℝ} {K : X β†’ X β†’ β„‚} {σ₁ Οƒβ‚‚ : X β†’ β„€} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ Οƒβ‚‚ F G] [TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)] {n : β„•} (t : Forest X n) (j : β„•) :
(t.rowDecomp_π”˜ j).PairwiseDisjoint fun (x : 𝔓 X) => ↑(π“˜ x)
theorem TileStructure.Forest.mem_rowDecomp_π”˜_maximal {X : Type u_1} {a : β„•} {q : ℝ} {K : X β†’ X β†’ β„‚} {σ₁ Οƒβ‚‚ : X β†’ β„€} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ Οƒβ‚‚ F G] [TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)] {n : β„•} (t : Forest X n) (j : β„•) (x : 𝔓 X) :
x ∈ t.rowDecomp_π”˜ j β†’ Maximal (fun (x : Grid X) => x ∈ π“˜ '' (t.π”˜ \ ⋃ (i : β„•), ⋃ (_ : i < j), t.rowDecomp_π”˜ i)) (π“˜ x)
theorem TileStructure.Forest.rowDecomp_π”˜_subset_forest {X : Type u_1} {a : β„•} {q : ℝ} {K : X β†’ X β†’ β„‚} {σ₁ Οƒβ‚‚ : X β†’ β„€} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ Οƒβ‚‚ F G] [TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)] {n : β„•} (t : Forest X n) (j : β„•) :
def TileStructure.Forest.rowDecomp {X : Type u_1} {a : β„•} {q : ℝ} {K : X β†’ X β†’ β„‚} {σ₁ Οƒβ‚‚ : X β†’ β„€} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ Οƒβ‚‚ F G] [TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)] {n : β„•} (t : Forest X n) (j : β„•) :
Row X n

The row-decomposition of a tree, defined in the proof of Lemma 7.7.1. The indexing is off-by-one compared to the blueprint.

Equations
  • One or more equations did not get rendered due to their size.
theorem TileStructure.Forest.mem_forest_of_mem {X : Type u_1} {a : β„•} {q : ℝ} {K : X β†’ X β†’ β„‚} {σ₁ Οƒβ‚‚ : X β†’ β„€} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ Οƒβ‚‚ F G] [TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)] {n : β„•} {t : Forest X n} {j : β„•} {x : 𝔓 X} (hx : x ∈ t.rowDecomp j) :
x ∈ t
theorem TileStructure.Forest.rowDecomp_π”˜_eq {X : Type u_1} {a : β„•} {q : ℝ} {K : X β†’ X β†’ β„‚} {σ₁ Οƒβ‚‚ : X β†’ β„€} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ Οƒβ‚‚ F G] [TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)] {n : β„•} (t : Forest X n) (j : β„•) :
theorem TileStructure.Forest.stackSize_remainder_ge_one_of_exists {X : Type u_1} {a : β„•} {q : ℝ} {K : X β†’ X β†’ β„‚} {σ₁ Οƒβ‚‚ : X β†’ β„€} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ Οƒβ‚‚ F G] [TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)] {n : β„•} (t : Forest X n) (j : β„•) (x : X) (this : βˆƒ 𝔲' ∈ (t.rowDecomp j).π”˜, x ∈ π“˜ 𝔲') :
1 ≀ stackSize ((t.π”˜ \ ⋃ (i : β„•), ⋃ (_ : i < j), (t.rowDecomp i).π”˜) ∩ (t.rowDecomp j).π”˜) x
theorem TileStructure.Forest.remainder_stackSize_le {X : Type u_1} {a : β„•} {q : ℝ} {K : X β†’ X β†’ β„‚} {σ₁ Οƒβ‚‚ : X β†’ β„€} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ Οƒβ‚‚ F G] [TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)] {n : β„•} (t : Forest X n) (j : β„•) (x : X) :
stackSize (t.π”˜ \ ⋃ (i : β„•), ⋃ (_ : i < j), (t.rowDecomp i).π”˜) x ≀ 2 ^ n - j
@[simp]
theorem TileStructure.Forest.biUnion_rowDecomp {X : Type u_1} {a : β„•} {q : ℝ} {K : X β†’ X β†’ β„‚} {σ₁ Οƒβ‚‚ : X β†’ β„€} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ Οƒβ‚‚ F G] [TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)] {n : β„•} {t : Forest X n} :
⋃ (j : β„•), ⋃ (_ : j < 2 ^ n), (t.rowDecomp j).π”˜ = t.π”˜

Part of Lemma 7.7.1

theorem TileStructure.Forest.pairwiseDisjoint_rowDecomp {X : Type u_1} {a : β„•} {q : ℝ} {K : X β†’ X β†’ β„‚} {σ₁ Οƒβ‚‚ : X β†’ β„€} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ Οƒβ‚‚ F G] [TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)] {n : β„•} {t : Forest X n} :
(Set.Iio (2 ^ n)).PairwiseDisjoint fun (x : β„•) => (t.rowDecomp x).π”˜

Part of Lemma 7.7.1

@[simp]
theorem TileStructure.Forest.rowDecomp_apply {X : Type u_1} {a : β„•} {q : ℝ} {K : X β†’ X β†’ β„‚} {σ₁ Οƒβ‚‚ : X β†’ β„€} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ Οƒβ‚‚ F G] [TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)] {n j : β„•} {t : Forest X n} {u : 𝔓 X} :
(fun (x : 𝔓 X) => (t.rowDecomp j).𝔗 x) u = (fun (x : 𝔓 X) => t.𝔗 x) u
@[irreducible]

The constant used in row_bound. Has value 2 ^ (156 * a ^ 3 - n / 2) in the blueprint.

Equations
theorem TileStructure.Forest.C7_7_2_1_def (a n : β„•) :
C7_7_2_1 a n = 2 ^ (156 * ↑a ^ 3 - ↑n / 2)
@[irreducible]

The constant used in indicator_row_bound. Has value 2 ^ (257 * a ^ 3 - n / 2) in the blueprint.

Equations
theorem TileStructure.Forest.C7_7_2_2_def (a n : β„•) :
C7_7_2_2 a n = 2 ^ (257 * ↑a ^ 3 - ↑n / 2)
theorem TileStructure.Forest.row_bound {X : Type u_1} {a : β„•} {q : ℝ} {K : X β†’ X β†’ β„‚} {σ₁ Οƒβ‚‚ : X β†’ β„€} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ Οƒβ‚‚ F G] [TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)] {n j : β„•} {t : Forest X n} {f : X β†’ β„‚} (hj : j < 2 ^ n) (hg : MeasureTheory.BoundedCompactSupport f) (h2f : βˆ€ (x : X), β€–f xβ€– ≀ G.indicator 1 x) :

Part of Lemma 7.7.2.

theorem TileStructure.Forest.indicator_row_bound {X : Type u_1} {a : β„•} {q : ℝ} {K : X β†’ X β†’ β„‚} {σ₁ Οƒβ‚‚ : X β†’ β„€} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ Οƒβ‚‚ F G] [TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)] {n j : β„•} {t : Forest X n} {u : 𝔓 X} {f : X β†’ β„‚} (hj : j < 2 ^ n) (hf : MeasureTheory.BoundedCompactSupport f) (h2f : βˆ€ (x : X), β€–f xβ€– ≀ G.indicator 1 x) :
MeasureTheory.eLpNorm ((βˆ‘ u ∈ {p : 𝔓 X | p ∈ t.rowDecomp j}, F.indicator) (adjointCarlesonSum ((fun (x : 𝔓 X) => t.𝔗 x) u) f)) 2 MeasureTheory.volume ≀ ↑(C7_7_2_2 a n) * densβ‚‚ (⋃ u ∈ t, (fun (x : 𝔓 X) => t.𝔗 x) u) ^ 2⁻¹ * MeasureTheory.eLpNorm f 2 MeasureTheory.volume

Part of Lemma 7.7.2.

theorem TileStructure.Forest.C7_7_3_def (a n : β„•) :
C7_7_3 a n = 2 ^ (862 * ↑a ^ 3 - 2 * ↑n)
@[irreducible]

The constant used in row_correlation. Has value 2 ^ (862 * a ^ 3 - 3 * n) in the blueprint.

Equations
theorem TileStructure.Forest.row_correlation {X : Type u_1} {a : β„•} {q : ℝ} {K : X β†’ X β†’ β„‚} {σ₁ Οƒβ‚‚ : X β†’ β„€} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ Οƒβ‚‚ F G] [TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)] {n j j' : β„•} {t : Forest X n} {f₁ fβ‚‚ : X β†’ β„‚} (hjj' : j < j') (hj' : j' < 2 ^ n) (hf₁ : Bornology.IsBounded (Set.range f₁)) (h2f₁ : HasCompactSupport f₁) (h3f₁ : βˆ€ (x : X), β€–f₁ xβ€– ≀ G.indicator 1 x) (hfβ‚‚ : Bornology.IsBounded (Set.range fβ‚‚)) (h2fβ‚‚ : HasCompactSupport fβ‚‚) (h3fβ‚‚ : βˆ€ (x : X), β€–fβ‚‚ xβ€– ≀ G.indicator 1 x) :
β†‘β€–βˆ« (x : X), (βˆ‘ u ∈ {p : 𝔓 X | p ∈ t.rowDecomp j}, adjointCarlesonSum ((fun (x : 𝔓 X) => t.𝔗 x) u) f₁ x) * βˆ‘ u ∈ {p : 𝔓 X | p ∈ t.rowDecomp j'}, adjointCarlesonSum ((fun (x : 𝔓 X) => t.𝔗 x) u) fβ‚‚ xβ€–β‚Š ≀ ↑(C7_7_3 a n) * MeasureTheory.eLpNorm f₁ 2 MeasureTheory.volume * MeasureTheory.eLpNorm fβ‚‚ 2 MeasureTheory.volume

Lemma 7.7.3.

def TileStructure.Forest.rowSupport {X : Type u_1} {a : β„•} {q : ℝ} {K : X β†’ X β†’ β„‚} {σ₁ Οƒβ‚‚ : X β†’ β„€} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ Οƒβ‚‚ F G] [TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)] {n : β„•} (t : Forest X n) (j : β„•) :
Set X

The definition of Eβ±Ό defined above Lemma 7.7.4.

Equations
theorem TileStructure.Forest.disjoint_impl {X : Type u_1} {a : β„•} {q : ℝ} {K : X β†’ X β†’ β„‚} {σ₁ Οƒβ‚‚ : X β†’ β„€} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ Οƒβ‚‚ F G] [TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)] {p p' : 𝔓 X} :
Disjoint (Ξ© p) (Ξ© p') β†’ Disjoint (E p) (E p')
theorem TileStructure.Forest.disjoint_of_ne_of_mem {X : Type u_1} {a : β„•} {q : ℝ} {K : X β†’ X β†’ β„‚} {σ₁ Οƒβ‚‚ : X β†’ β„€} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ Οƒβ‚‚ F G] [TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)] {n : β„•} {t : Forest X n} {i j : β„•} {u u' : 𝔓 X} (hne : u β‰  u') (hu : u ∈ t.rowDecomp i) (hu' : u' ∈ t.rowDecomp j) {p p' : 𝔓 X} (hp : p ∈ (fun (x : 𝔓 X) => t.𝔗 x) u) (hp' : p' ∈ (fun (x : 𝔓 X) => t.𝔗 x) u') :
Disjoint (E p) (E p')
theorem TileStructure.Forest.pairwiseDisjoint_rowSupport {X : Type u_1} {a : β„•} {q : ℝ} {K : X β†’ X β†’ β„‚} {σ₁ Οƒβ‚‚ : X β†’ β„€} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ Οƒβ‚‚ F G] [TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)] {n : β„•} {t : Forest X n} :

Lemma 7.7.4

Proposition 2.0.4 #

theorem C2_0_4_base_def (a : ℝ) :
C2_0_4_base a = 2 ^ (432 * a ^ 3)
@[irreducible]
Equations
theorem C2_0_4_def (a q : ℝ) (n : β„•) :
C2_0_4 a q n = C2_0_4_base a * 2 ^ (-(q - 1) / q * ↑n)
@[irreducible]
def C2_0_4 (a q : ℝ) (n : β„•) :

The constant used in forest_operator. Has value 2 ^ (432 * a ^ 3 - (q - 1) / q * n) in the blueprint.

Equations
theorem forest_operator {X : Type u_1} {a : β„•} {q : ℝ} {K : X β†’ X β†’ β„‚} {σ₁ Οƒβ‚‚ : X β†’ β„€} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ Οƒβ‚‚ F G] [TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)] {n : β„•} (𝔉 : TileStructure.Forest X n) {f g : X β†’ β„‚} (hf : Measurable f) (h2f : βˆ€ (x : X), β€–f xβ€– ≀ F.indicator 1 x) (hg : Measurable g) (h2g : Bornology.IsBounded (Function.support g)) :
β†‘β€–βˆ« (x : X), (starRingEnd β„‚) (g x) * βˆ‘ u ∈ {p : 𝔓 X | p ∈ 𝔉}, carlesonSum ((fun (x : 𝔓 X) => 𝔉.𝔗 x) u) f xβ€–β‚Š ≀ ↑(C2_0_4 (↑a) q n) * densβ‚‚ (⋃ u ∈ 𝔉, (fun (x : 𝔓 X) => 𝔉.𝔗 x) u) ^ (q⁻¹ - 2⁻¹) * MeasureTheory.eLpNorm f 2 MeasureTheory.volume * MeasureTheory.eLpNorm g 2 MeasureTheory.volume
theorem forest_operator' {X : Type u_1} {a : β„•} {q : ℝ} {K : X β†’ X β†’ β„‚} {σ₁ Οƒβ‚‚ : X β†’ β„€} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ Οƒβ‚‚ F G] [TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)] {n : β„•} (𝔉 : TileStructure.Forest X n) {f : X β†’ β„‚} {A : Set X} (hf : Measurable f) (h2f : βˆ€ (x : X), β€–f xβ€– ≀ F.indicator 1 x) (hA : MeasurableSet A) (h'A : Bornology.IsBounded A) :
∫⁻ (x : X) in A, β€–βˆ‘ u ∈ {p : 𝔓 X | p ∈ 𝔉}, carlesonSum ((fun (x : 𝔓 X) => 𝔉.𝔗 x) u) f xβ€–β‚‘ ≀ ↑(C2_0_4 (↑a) q n) * densβ‚‚ (⋃ u ∈ 𝔉, (fun (x : 𝔓 X) => 𝔉.𝔗 x) u) ^ (q⁻¹ - 2⁻¹) * MeasureTheory.eLpNorm f 2 MeasureTheory.volume * MeasureTheory.volume A ^ (1 / 2)

Version of the forest operator theorem, but controlling the integral of the norm instead of the integral of the function multiplied by another function.

theorem forest_operator_le_volume {X : Type u_1} {a : β„•} {q : ℝ} {K : X β†’ X β†’ β„‚} {σ₁ Οƒβ‚‚ : X β†’ β„€} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ Οƒβ‚‚ F G] [TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)] {n : β„•} (𝔉 : TileStructure.Forest X n) {f : X β†’ β„‚} {A : Set X} (hf : Measurable f) (h2f : βˆ€ (x : X), β€–f xβ€– ≀ F.indicator 1 x) (hA : MeasurableSet A) (h'A : Bornology.IsBounded A) :
∫⁻ (x : X) in A, β€–βˆ‘ u ∈ {p : 𝔓 X | p ∈ 𝔉}, carlesonSum ((fun (x : 𝔓 X) => 𝔉.𝔗 x) u) f xβ€–β‚‘ ≀ ↑(C2_0_4 (↑a) q n) * densβ‚‚ (⋃ u ∈ 𝔉, (fun (x : 𝔓 X) => 𝔉.𝔗 x) u) ^ (q⁻¹ - 2⁻¹) * MeasureTheory.volume F ^ (1 / 2) * MeasureTheory.volume A ^ (1 / 2)

Version of the forest operator theorem, but controlling the integral of the norm instead of the integral of the function multiplied by another function, and with the upper bound in terms of volume F and volume G.