Documentation

Carleson.ForestOperator.RemainingTiles

Section 7.6 and Lemma 7.4.6 #

def TileStructure.Forest.𝓙₆ {X : Type u_1} {a : β„•} {q : ℝ} {K : X β†’ X β†’ β„‚} {σ₁ Οƒβ‚‚ : X β†’ β„€} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ Οƒβ‚‚ F G] [TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)] {n : β„•} (t : TileStructure.Forest X n) (u₁ : 𝔓 X) :
Set (Grid X)

The definition 𝓙' at the start of Section 7.6. We use a different notation to distinguish it from the 𝓙' used in Section 7.5

Equations
Instances For
    theorem TileStructure.Forest.union_𝓙₆ {X : Type u_1} {a : β„•} {q : ℝ} {K : X β†’ X β†’ β„‚} {σ₁ Οƒβ‚‚ : X β†’ β„€} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ Οƒβ‚‚ F G] [TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)] {n : β„•} {t : TileStructure.Forest X n} {u₁ : 𝔓 X} (hu₁ : u₁ ∈ t) :
    ⋃ J ∈ t.𝓙₆ u₁, ↑J = ↑(π“˜ u₁)

    Part of Lemma 7.6.1.

    theorem TileStructure.Forest.pairwiseDisjoint_𝓙₆ {X : Type u_1} {a : β„•} {q : ℝ} {K : X β†’ X β†’ β„‚} {σ₁ Οƒβ‚‚ : X β†’ β„€} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ Οƒβ‚‚ F G] [TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)] {n : β„•} {t : TileStructure.Forest X n} {u₁ : 𝔓 X} (hu₁ : u₁ ∈ t) :
    (t.𝓙₆ u₁).PairwiseDisjoint fun (I : Grid X) => ↑I

    Part of Lemma 7.6.1.

    @[irreducible]

    The constant used in thin_scale_impact. This is denoted s₁ in the proof of Lemma 7.6.3. Has value Z * n / (202 * a ^ 3) - 2 in the blueprint.

    Equations
    Instances For
      theorem TileStructure.Forest.C7_6_3_def (a n : β„•) :
      TileStructure.Forest.C7_6_3 a n = ↑(defaultZ a) * ↑n / (202 * ↑a ^ 3) - 2
      theorem TileStructure.Forest.C7_6_3_pos {X : Type u_1} {a : β„•} {q : ℝ} {K : X β†’ X β†’ β„‚} {σ₁ Οƒβ‚‚ : X β†’ β„€} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ Οƒβ‚‚ F G] [TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)] {n : β„•} [ProofData a q K σ₁ Οƒβ‚‚ F G] (h : 1 ≀ n) :
      theorem TileStructure.Forest.thin_scale_impact {X : Type u_1} {a : β„•} {q : ℝ} {K : X β†’ X β†’ β„‚} {σ₁ Οƒβ‚‚ : X β†’ β„€} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ Οƒβ‚‚ F G] [TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)] {n : β„•} {t : TileStructure.Forest X n} {u₁ uβ‚‚ p : 𝔓 X} {J : Grid X} (hu₁ : u₁ ∈ t) (huβ‚‚ : uβ‚‚ ∈ t) (hu : u₁ β‰  uβ‚‚) (h2u : π“˜ u₁ ≀ π“˜ uβ‚‚) (hp : p ∈ (fun (x : 𝔓 X) => t.𝔗 x) uβ‚‚ \ t.𝔖₀ u₁ uβ‚‚) (hJ : J ∈ t.𝓙₆ u₁) (h : Β¬Disjoint (Metric.ball (𝔠 p) (8 * ↑(defaultD a) ^ 𝔰 p)) (Metric.ball (c J) (8 * ↑(defaultD a) ^ s J))) :

      Lemma 7.6.3.

      theorem TileStructure.Forest.C7_6_4_def (a : β„•) (s : β„€) :
      TileStructure.Forest.C7_6_4 a s = 2 ^ (14 * ↑a + 1) * (8 * ↑(defaultD a) ^ (-s)) ^ defaultΞΊ a
      theorem TileStructure.Forest.square_function_count {X : Type u_1} {a : β„•} {q : ℝ} {K : X β†’ X β†’ β„‚} {σ₁ Οƒβ‚‚ : X β†’ β„€} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ Οƒβ‚‚ F G] [TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)] {n : β„•} {t : TileStructure.Forest X n} {u₁ : 𝔓 X} {J : Grid X} (hJ : J ∈ t.𝓙₆ u₁) (s' : β„€) :
      ⨍⁻ (x : X) in ↑J, (βˆ‘ I ∈ Finset.filter (fun (I : Grid X) => s I = s J - s' ∧ Disjoint ↑I ↑(π“˜ u₁) ∧ Β¬Disjoint (↑J) (Metric.ball (c I) (8 * ↑(defaultD a) ^ s I))) Finset.univ, (Metric.ball (c I) (8 * ↑(defaultD a) ^ s I)).indicator 1 x) ^ 2 βˆ‚MeasureTheory.volume ≀ ↑(TileStructure.Forest.C7_6_4 a s')

      Lemma 7.6.4.

      @[irreducible]

      The constant used in bound_for_tree_projection. Has value 2 ^ (118 * a ^ 3 - 100 / (202 * a) * Z * n * ΞΊ) in the blueprint.

      Equations
      Instances For
        theorem TileStructure.Forest.C7_6_2_def (a n : β„•) :
        TileStructure.Forest.C7_6_2 a n = 2 ^ (118 * ↑a ^ 3 - 100 / (202 * ↑a) * ↑(defaultZ a) * ↑n * defaultΞΊ a)
        theorem TileStructure.Forest.bound_for_tree_projection {X : Type u_1} {a : β„•} {q : ℝ} {K : X β†’ X β†’ β„‚} {σ₁ Οƒβ‚‚ : X β†’ β„€} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ Οƒβ‚‚ F G] [TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)] {n : β„•} {t : TileStructure.Forest X n} {u₁ uβ‚‚ : 𝔓 X} {f : X β†’ β„‚} (hu₁ : u₁ ∈ t) (huβ‚‚ : uβ‚‚ ∈ t) (hu : u₁ β‰  uβ‚‚) (h2u : π“˜ u₁ ≀ π“˜ uβ‚‚) (hf : Bornology.IsBounded (Set.range f)) (h2f : HasCompactSupport f) (h3f : MeasureTheory.AEStronglyMeasurable f MeasureTheory.volume) :
        MeasureTheory.eLpNorm (TileStructure.Forest.approxOnCube (t.𝓙₆ u₁) fun (x : X) => β€–TileStructure.Forest.adjointCarlesonSum ((fun (x : 𝔓 X) => t.𝔗 x) uβ‚‚ \ t.𝔖₀ u₁ uβ‚‚) f xβ€–) 2 MeasureTheory.volume ≀ ↑(TileStructure.Forest.C7_6_2 a n) * MeasureTheory.eLpNorm ((↑(π“˜ u₁)).indicator fun (x : X) => (MB MeasureTheory.volume TileStructure.Forest.𝓑 TileStructure.Forest.c𝓑 TileStructure.Forest.r𝓑 (fun (x : X) => β€–f xβ€–) x).toReal) 2 MeasureTheory.volume

        Lemma 7.6.2. Todo: add needed hypothesis to LaTeX

        @[irreducible]

        The constant used in correlation_near_tree_parts. Has value 2 ^ (541 * a ^ 3 - Z * n / (4 * a ^ 2 + 2 * a ^ 3)) in the blueprint.

        Equations
        Instances For
          theorem TileStructure.Forest.C7_4_6_def (a n : β„•) :
          TileStructure.Forest.C7_4_6 a n = 2 ^ (222 * ↑a ^ 3 - ↑(defaultZ a) * ↑n * 2 ^ (-10 * ↑a))
          theorem TileStructure.Forest.correlation_near_tree_parts {X : Type u_1} {a : β„•} {q : ℝ} {K : X β†’ X β†’ β„‚} {σ₁ Οƒβ‚‚ : X β†’ β„€} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ Οƒβ‚‚ F G] [TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)] {n : β„•} {t : TileStructure.Forest X n} {u₁ uβ‚‚ : 𝔓 X} {f₁ fβ‚‚ g₁ gβ‚‚ : X β†’ β„‚} (hu₁ : u₁ ∈ t) (huβ‚‚ : uβ‚‚ ∈ t) (hu : u₁ β‰  uβ‚‚) (h2u : π“˜ u₁ ≀ π“˜ uβ‚‚) (hf₁ : Bornology.IsBounded (Set.range f₁)) (h2f₁ : HasCompactSupport f₁) (hfβ‚‚ : Bornology.IsBounded (Set.range fβ‚‚)) (h2fβ‚‚ : HasCompactSupport fβ‚‚) :
          β†‘β€–βˆ« (x : X), TileStructure.Forest.adjointCarlesonSum ((fun (x : 𝔓 X) => t.𝔗 x) u₁) g₁ x * (starRingEnd β„‚) (TileStructure.Forest.adjointCarlesonSum ((fun (x : 𝔓 X) => t.𝔗 x) uβ‚‚ \ t.𝔖₀ u₁ uβ‚‚) gβ‚‚ x)β€–β‚Š ≀ ↑(TileStructure.Forest.C7_4_6 a n) * MeasureTheory.eLpNorm (fun (x : X) => ((↑(π“˜ u₁)).indicator (t.adjointBoundaryOperator u₁ g₁) x).toReal) 2 MeasureTheory.volume * MeasureTheory.eLpNorm (fun (x : X) => ((↑(π“˜ u₁)).indicator (t.adjointBoundaryOperator uβ‚‚ gβ‚‚) x).toReal) 2 MeasureTheory.volume

          Lemma 7.4.6