Documentation

Carleson.ForestOperator.QuantativeEstimate

Section 7.3 and Lemma 7.3.1 #

theorem TileStructure.Forest.C7_3_2_def (a : ) :
C7_3_2 a = 2 ^ (101 * a ^ 3)
@[irreducible]

The constant used in local_dens1_tree_bound. Has value 2 ^ (101 * a ^ 3) in the blueprint.

Equations
Instances For
    theorem TileStructure.Forest.local_dens1_tree_bound_exists {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {n : } {t : Forest X n} {u : 𝔓 X} {L : Grid X} (hu : u t) (hL : L 𝓛 ((fun (x : 𝔓 X) => t.𝔗 x) u)) (hp₂ : p(fun (x : 𝔓 X) => t.𝔗 x) u, ¬Disjoint (↑L) (E p) 𝔰 p s L) :
    MeasureTheory.volume (L G p(fun (x : 𝔓 X) => t.𝔗 x) u, E p) (C7_3_2 a) * dens₁ ((fun (x : 𝔓 X) => t.𝔗 x) u) * MeasureTheory.volume L

    Part 1 of Lemma 7.3.2.

    theorem TileStructure.Forest.volume_bound_of_Grid_lt {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {L L' : Grid X} (lL : L L') (sL : s L' = s L + 1) :
    MeasureTheory.volume L' 2 ^ (100 * a ^ 3 + 5 * a) * MeasureTheory.volume L
    theorem TileStructure.Forest.local_dens1_tree_bound {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {n : } {t : Forest X n} {u : 𝔓 X} {L : Grid X} (hu : u t) (hL : L 𝓛 ((fun (x : 𝔓 X) => t.𝔗 x) u)) :
    MeasureTheory.volume (L G p(fun (x : 𝔓 X) => t.𝔗 x) u, E p) (C7_3_2 a) * dens₁ ((fun (x : 𝔓 X) => t.𝔗 x) u) * MeasureTheory.volume L

    Lemma 7.3.2.

    @[irreducible]

    The constant used in local_dens2_tree_bound. Has value 2 ^ (200 * a ^ 3 + 19) in the blueprint, but that appears to be an error.

    Equations
    Instances For
      theorem TileStructure.Forest.C7_3_3_def (a : ) :
      C7_3_3 a = 2 ^ (201 * a ^ 3)
      theorem TileStructure.Forest.local_dens2_tree_bound {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {n : } {t : Forest X n} {u : 𝔓 X} {J : Grid X} (hu : u t) (hJ : J 𝓙 ((fun (x : 𝔓 X) => t.𝔗 x) u)) :
      MeasureTheory.volume (F J) (C7_3_3 a) * dens₂ ((fun (x : 𝔓 X) => t.𝔗 x) u) * MeasureTheory.volume J

      Lemma 7.3.3.

      theorem TileStructure.Forest.C7_3_1_1_def (a : ) :
      C7_3_1_1 a = 2 ^ (202.5 * a ^ 3)
      @[irreducible]

      The constant used in density_tree_bound1. Has value 2 ^ (155 * a ^ 3) in the blueprint, but that was based on an incorrect version of Lemma 7.2.1.

      Equations
      Instances For
        theorem TileStructure.Forest.density_tree_bound1 {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {n : } {t : Forest X n} {u : 𝔓 X} {f g : X} (hf : MeasureTheory.BoundedCompactSupport f) (hg : MeasureTheory.BoundedCompactSupport g) (h2g : ∀ (x : X), g x G.indicator 1 x) (hu : u t) :

        First part of Lemma 7.3.1.

        theorem TileStructure.Forest.C7_3_1_2_def (a : ) :
        C7_3_1_2 a = 2 ^ (303 * a ^ 3)
        @[irreducible]

        The constant used in density_tree_bound2. Has value 2 ^ (256 * a ^ 3) in the blueprint, but that was based on an incorrect version of Lemma 7.2.1.

        Equations
        Instances For
          theorem TileStructure.Forest.density_tree_bound2 {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {n : } {t : Forest X n} {u : 𝔓 X} {f g : X} (hf : MeasureTheory.BoundedCompactSupport f) (h2f : ∀ (x : X), f x F.indicator 1 x) (hg : MeasureTheory.BoundedCompactSupport g) (h2g : ∀ (x : X), g x G.indicator 1 x) (hu : u t) :
          (x : X), (starRingEnd ) (g x) * carlesonSum ((fun (x : 𝔓 X) => t.𝔗 x) u) f x‖ₑ (C7_3_1_2 a) * dens₁ ((fun (x : 𝔓 X) => t.𝔗 x) u) ^ 2⁻¹ * dens₂ ((fun (x : 𝔓 X) => t.𝔗 x) u) ^ 2⁻¹ * MeasureTheory.eLpNorm f 2 MeasureTheory.volume * MeasureTheory.eLpNorm g 2 MeasureTheory.volume

          Second part of Lemma 7.3.1.