Section 7.3 and Lemma 7.3.1 #
@[irreducible]
The constant used in local_dens1_tree_bound.
Has value 2 ^ (101 * a ^ 3) in the blueprint.
Instances For
theorem
TileStructure.Forest.local_dens1_tree_bound_exists
{X : Type u_1}
{a : β}
{q : β}
{K : X β X β β}
{Οβ Οβ : X β β€}
{F G : Set X}
[MetricSpace X]
[ProofData a q K Οβ Οβ F G]
[TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)]
{n : β}
{t : Forest X n}
{u : π X}
{L : Grid X}
(hu : u β t)
(hL : L β π ((fun (x : π X) => t.π x) u))
(hpβ : β p β (fun (x : π X) => t.π x) u, Β¬Disjoint (βL) (E p) β§ π° p β€ s L)
:
Part 1 of Lemma 7.3.2.
theorem
TileStructure.Forest.volume_bound_of_Grid_lt
{X : Type u_1}
{a : β}
{q : β}
{K : X β X β β}
{Οβ Οβ : X β β€}
{F G : Set X}
[MetricSpace X]
[ProofData a q K Οβ Οβ F G]
[TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)]
{L L' : Grid X}
(lL : L β€ L')
(sL : s L' = s L + 1)
:
theorem
TileStructure.Forest.local_dens1_tree_bound
{X : Type u_1}
{a : β}
{q : β}
{K : X β X β β}
{Οβ Οβ : X β β€}
{F G : Set X}
[MetricSpace X]
[ProofData a q K Οβ Οβ F G]
[TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)]
{n : β}
{t : Forest X n}
{u : π X}
{L : Grid X}
(hu : u β t)
(hL : L β π ((fun (x : π X) => t.π x) u))
:
Lemma 7.3.2.
@[irreducible]
The constant used in local_dens2_tree_bound.
Has value 2 ^ (201 * a ^ 3) in the blueprint.
Instances For
theorem
TileStructure.Forest.local_dens2_tree_bound
{X : Type u_1}
{a : β}
{q : β}
{K : X β X β β}
{Οβ Οβ : X β β€}
{F G : Set X}
[MetricSpace X]
[ProofData a q K Οβ Οβ F G]
[TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)]
{n : β}
{t : Forest X n}
{u : π X}
{J : Grid X}
(hu : u β t)
(hJ : J β π ((fun (x : π X) => t.π x) u))
:
MeasureTheory.volume (F β© βJ) β€ β(C7_3_3 a) * densβ ((fun (x : π X) => t.π x) u) * MeasureTheory.volume βJ
Lemma 7.3.3.
theorem
TileStructure.Forest.eLpNorm_approxOnCube_two_le_self
{X : Type u_1}
{a : β}
{q : β}
{K : X β X β β}
{Οβ Οβ : X β β€}
{F G : Set X}
[MetricSpace X]
[ProofData a q K Οβ Οβ F G]
[TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)]
{f : X β β}
(hf : MeasureTheory.BoundedCompactSupport f MeasureTheory.volume)
{C : Set (Grid X)}
(pdC : C.PairwiseDisjoint fun (I : Grid X) => βI)
:
MeasureTheory.eLpNorm (approxOnCube C fun (x : X) => βf xβ) 2 MeasureTheory.volume β€ MeasureTheory.eLpNorm f 2 MeasureTheory.volume
theorem
TileStructure.Forest.density_tree_bound1
{X : Type u_1}
{a : β}
{q : β}
{K : X β X β β}
{Οβ Οβ : X β β€}
{F G : Set X}
[MetricSpace X]
[ProofData a q K Οβ Οβ F G]
[TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)]
{n : β}
{t : Forest X n}
{u : π X}
{f g : X β β}
(hf : MeasureTheory.BoundedCompactSupport f MeasureTheory.volume)
(hg : MeasureTheory.BoundedCompactSupport g MeasureTheory.volume)
(h2g : Function.support g β G)
(hu : u β t)
:
ββ« (x : X), (starRingEnd β) (g x) * carlesonSum ((fun (x : π X) => t.π x) u) f xββ β€ β(C7_3_1_1 a) * densβ ((fun (x : π X) => t.π x) u) ^ 2β»ΒΉ * MeasureTheory.eLpNorm f 2 MeasureTheory.volume * MeasureTheory.eLpNorm g 2 MeasureTheory.volume
First part of Lemma 7.3.1.
@[irreducible]
The constant used in density_tree_bound2 and indicator_adjoint_tree_estimate.
Has value 2 ^ (282 * a ^ 3) in the blueprint.
Instances For
theorem
TileStructure.Forest.density_tree_bound2
{X : Type u_1}
{a : β}
{q : β}
{K : X β X β β}
{Οβ Οβ : X β β€}
{F G : Set X}
[MetricSpace X]
[ProofData a q K Οβ Οβ F G]
[TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)]
{n : β}
{t : Forest X n}
{u : π X}
{f g : X β β}
(hf : MeasureTheory.BoundedCompactSupport f MeasureTheory.volume)
(h2f : Function.support f β F)
(hg : MeasureTheory.BoundedCompactSupport g MeasureTheory.volume)
(h2g : Function.support g β G)
(hu : u β t)
:
ββ« (x : X), (starRingEnd β) (g x) * carlesonSum ((fun (x : π X) => t.π x) u) f xββ β€ β(C7_3_1_2 a) * densβ ((fun (x : π X) => t.π x) u) ^ 2β»ΒΉ * densβ ((fun (x : π X) => t.π x) u) ^ 2β»ΒΉ * MeasureTheory.eLpNorm f 2 MeasureTheory.volume * MeasureTheory.eLpNorm g 2 MeasureTheory.volume
Second part of Lemma 7.3.1.
theorem
MeasureTheory.BoundedCompactSupport.const_smul
{X : Type u_1}
{a : β}
{q : β}
{K : X β X β β}
{Οβ Οβ : X β β€}
{F G : Set X}
[MetricSpace X]
[ProofData a q K Οβ Οβ F G]
{f : X β β}
(hf : BoundedCompactSupport f volume)
(c : β)
:
BoundedCompactSupport (c β’ f) volume
theorem
MonoidHomClass.map_mulIndicator
{F : Type u_3}
{X : Type u_4}
{A : Type u_5}
{B : Type u_6}
[Monoid A]
[Monoid B]
[FunLike F A B]
[MonoidHomClass F A B]
{s : Set X}
(f : F)
(x : X)
(g : X β A)
: