theorem
enorm_algebraMap'
{𝕜 : Type u_1}
(𝕜' : Type u_2)
[NormedField 𝕜]
[SeminormedRing 𝕜']
[NormedAlgebra 𝕜 𝕜']
[NormOneClass 𝕜']
(x : 𝕜)
:
theorem
enorm_integral_starRingEnd_mul_eq_lintegral_enorm
{𝕜 : Type u_1}
[RCLike 𝕜]
{α : Type u_2}
[MeasurableSpace α]
{μ : MeasureTheory.Measure α}
{f : α → 𝕜}
(hf : MeasureTheory.Integrable f μ)
:
theorem
enorm_integral_mul_starRingEnd_comm
{𝕜 : Type u_1}
[RCLike 𝕜]
{α : Type u_2}
[MeasurableSpace α]
{μ : MeasureTheory.Measure α}
{f g : α → 𝕜}
:
theorem
MeasureTheory.setIntegral_union_2
{X : Type u_1}
{E : Type u_2}
[MeasurableSpace X]
[NormedAddCommGroup E]
[NormedSpace ℝ E]
{f : X → E}
{s t : Set X}
{μ : Measure X}
(hst : Disjoint s t)
(ht : MeasurableSet t)
(hfst : IntegrableOn f (s ∪ t) μ)
:
theorem
MeasureTheory.exists_ne_zero_of_setIntegral_ne_zero
{α : Type u_1}
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
[MeasurableSpace α]
{μ : Measure α}
{f : α → E}
{U : Set α}
(hU : ∫ (u : α) in U, f u ∂μ ≠ 0)
:
∃ u ∈ U, f u ≠ 0
theorem
MeasureTheory.exists_ne_zero_of_integral_ne_zero
{α : Type u_1}
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
[MeasurableSpace α]
{μ : Measure α}
{f : α → E}
(h : ∫ (u : α), f u ∂μ ≠ 0)
:
∃ (u : α), f u ≠ 0