Documentation

Carleson.ToMathlib.MeasureTheory.Integral.Bochner.ContinuousLinearMap

theorem starRingEnd_div_mul_eq_norm {α : Type u_1} {𝕜 : Type u_2} [RCLike 𝕜] {f : α𝕜} (x : α) :
(starRingEnd 𝕜) (f x / f x) * f x = f x
theorem enorm_algebraMap' {𝕜 : Type u_1} (𝕜' : Type u_2) [NormedField 𝕜] [SeminormedRing 𝕜'] [NormedAlgebra 𝕜 𝕜'] [NormOneClass 𝕜'] (x : 𝕜) :
theorem enorm_integral_norm_eq_integral_enorm {α : Type u_1} {𝕜 : Type u_2} [MeasurableSpace α] [RCLike 𝕜] {μ : MeasureTheory.Measure α} {f : α𝕜} (hf : MeasureTheory.Integrable f μ) :
(x : α), f x μ‖ₑ = ∫⁻ (x : α), f x‖ₑ μ
theorem enorm_integral_starRingEnd_mul_eq_lintegral_enorm {𝕜 : Type u_1} [RCLike 𝕜] {α : Type u_2} [MeasurableSpace α] {μ : MeasureTheory.Measure α} {f : α𝕜} (hf : MeasureTheory.Integrable f μ) :
(x : α), (starRingEnd 𝕜) (f x / f x) * f x μ‖ₑ = ∫⁻ (x : α), f x‖ₑ μ
theorem enorm_integral_mul_starRingEnd_comm {𝕜 : Type u_1} [RCLike 𝕜] {α : Type u_2} [MeasurableSpace α] {μ : MeasureTheory.Measure α} {f g : α𝕜} :
(x : α), f x * (starRingEnd 𝕜) (g x) μ‖ₑ = (x : α), g x * (starRingEnd 𝕜) (f x) μ‖ₑ
theorem MeasureTheory.setIntegral_union_2 {X : Type u_1} {E : Type u_2} [MeasurableSpace X] [NormedAddCommGroup E] [NormedSpace E] {f : XE} {s t : Set X} {μ : Measure X} (hst : Disjoint s t) (ht : MeasurableSet t) (hfst : IntegrableOn f (s t) μ) :
(x : X) in s t, f x μ = (x : X) in s, f x μ + (x : X) in t, f x μ
theorem MeasureTheory.exists_ne_zero_of_setIntegral_ne_zero {α : Type u_1} {E : Type u_2} [NormedAddCommGroup E] [NormedSpace E] [MeasurableSpace α] {μ : Measure α} {f : αE} {U : Set α} (hU : (u : α) in U, f u μ 0) :
uU, f u 0
theorem MeasureTheory.exists_ne_zero_of_integral_ne_zero {α : Type u_1} {E : Type u_2} [NormedAddCommGroup E] [NormedSpace E] [MeasurableSpace α] {μ : Measure α} {f : αE} (h : (u : α), f u μ 0) :
∃ (u : α), f u 0