Section 7.4 except Lemmas 4-6 #
def
TileStructure.Forest.adjointBoundaryOperator
{X : Type u_1}
{a : β}
{q : β}
{K : X β X β β}
{Οβ Οβ : X β β€}
{F G : Set X}
[MetricSpace X]
[ProofData a q K Οβ Οβ F G]
[TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)]
{n : β}
(t : Forest X n)
(u : π X)
(f : X β β)
(x : X)
:
The operator S_{2,π²} f(x), given above Lemma 7.4.3.
Equations
- One or more equations did not get rendered due to their size.
Instances For
def
TileStructure.Forest.πβ
{X : Type u_1}
{a : β}
{q : β}
{K : X β X β β}
{Οβ Οβ : X β β€}
{F G : Set X}
[MetricSpace X]
[ProofData a q K Οβ Οβ F G]
[TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)]
{n : β}
(t : Forest X n)
(uβ uβ : π X)
:
The set π defined in the proof of Lemma 7.4.4.
We append a subscript 0 to distinguish it from the section variable.
Equations
Instances For
theorem
TileStructure.Forest.adjoint_tile_support1
{X : Type u_1}
{a : β}
{q : β}
{K : X β X β β}
{Οβ Οβ : X β β€}
{F G : Set X}
[MetricSpace X]
[ProofData a q K Οβ Οβ F G]
[TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)]
{p : π X}
{f : X β β}
:
adjointCarleson p f = (Metric.ball (π p) (5 * β(defaultD a) ^ π° p)).indicator (adjointCarleson p ((β(π p)).indicator f))
Part 1 of Lemma 7.4.1. Todo: update blueprint with precise properties needed on the function.
theorem
TileStructure.Forest.adjoint_tile_support2
{X : Type u_1}
{a : β}
{q : β}
{K : X β X β β}
{Οβ Οβ : X β β€}
{F G : Set X}
[MetricSpace X]
[ProofData a q K Οβ Οβ F G]
[TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)]
{n : β}
{t : Forest X n}
{u p : π X}
{f : X β β}
(hu : u β t)
(hp : p β (fun (x : π X) => t.π x) u)
:
Part 2 of Lemma 7.4.1. Todo: update blueprint with precise properties needed on the function.
theorem
TileStructure.Forest.adjoint_tile_support2_sum
{X : Type u_1}
{a : β}
{q : β}
{K : X β X β β}
{Οβ Οβ : X β β€}
{F G : Set X}
[MetricSpace X]
[ProofData a q K Οβ Οβ F G]
[TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)]
{n : β}
{t : Forest X n}
{u : π X}
{f : X β β}
(hu : u β t)
:
theorem
TileStructure.Forest.adjoint_tile_support2_sum_partial
{X : Type u_1}
{a : β}
{q : β}
{K : X β X β β}
{Οβ Οβ : X β β€}
{F G : Set X}
[MetricSpace X]
[ProofData a q K Οβ Οβ F G]
[TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)]
{n : β}
{t : Forest X n}
{u : π X}
{f : X β β}
(hu : u β t)
:
adjointCarlesonSum ((fun (x : π X) => t.π x) u) f = adjointCarlesonSum ((fun (x : π X) => t.π x) u) ((β(π u)).indicator f)
A partially applied variant of adjoint_tile_support2_sum, used to prove Lemma 7.7.3.
theorem
TileStructure.Forest.enorm_adjointCarleson_le
{X : Type u_1}
{a : β}
{q : β}
{K : X β X β β}
{Οβ Οβ : X β β€}
{F G : Set X}
[MetricSpace X]
[ProofData a q K Οβ Οβ F G]
[TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)]
{p : π X}
{f : X β β}
{x : X}
:
theorem
TileStructure.Forest.enorm_adjointCarleson_le_mul_indicator
{X : Type u_1}
{a : β}
{q : β}
{K : X β X β β}
{Οβ Οβ : X β β€}
{F G : Set X}
[MetricSpace X]
[ProofData a q K Οβ Οβ F G]
[TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)]
{p : π X}
{f : X β β}
{x : X}
:
theorem
TileStructure.Forest.adjoint_density_tree_bound1
{X : Type u_1}
{a : β}
{q : β}
{K : X β X β β}
{Οβ Οβ : X β β€}
{F G : Set X}
[MetricSpace X]
[ProofData a q K Οβ Οβ F G]
[TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)]
{n : β}
{t : Forest X n}
{u : π X}
{f g : X β β}
(hf : MeasureTheory.BoundedCompactSupport f MeasureTheory.volume)
(hg : MeasureTheory.BoundedCompactSupport g MeasureTheory.volume)
(h2g : Function.support g β G)
(hu : u β t)
:
ββ« (x : X), (starRingEnd β) (adjointCarlesonSum ((fun (x : π X) => t.π x) u) g x) * f xββ β€ β(C7_3_1_1 a) * densβ ((fun (x : π X) => t.π x) u) ^ 2β»ΒΉ * MeasureTheory.eLpNorm f 2 MeasureTheory.volume * MeasureTheory.eLpNorm g 2 MeasureTheory.volume
theorem
TileStructure.Forest.adjoint_tree_estimate
{X : Type u_1}
{a : β}
{q : β}
{K : X β X β β}
{Οβ Οβ : X β β€}
{F G : Set X}
[MetricSpace X]
[ProofData a q K Οβ Οβ F G]
[TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)]
{n : β}
{t : Forest X n}
{u : π X}
{g : X β β}
(hg : MeasureTheory.BoundedCompactSupport g MeasureTheory.volume)
(h2g : Function.support g β G)
(hu : u β t)
:
MeasureTheory.eLpNorm (adjointCarlesonSum ((fun (x : π X) => t.π x) u) g) 2 MeasureTheory.volume β€ β(C7_3_1_1 a) * densβ ((fun (x : π X) => t.π x) u) ^ 2β»ΒΉ * MeasureTheory.eLpNorm g 2 MeasureTheory.volume
Part 1 of Lemma 7.4.2.
theorem
TileStructure.Forest.adjoint_density_tree_bound2
{X : Type u_1}
{a : β}
{q : β}
{K : X β X β β}
{Οβ Οβ : X β β€}
{F G : Set X}
[MetricSpace X]
[ProofData a q K Οβ Οβ F G]
[TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)]
{n : β}
{t : Forest X n}
{u : π X}
{f g : X β β}
(hf : MeasureTheory.BoundedCompactSupport f MeasureTheory.volume)
(h2f : Function.support f β F)
(hg : MeasureTheory.BoundedCompactSupport g MeasureTheory.volume)
(h2g : Function.support g β G)
(hu : u β t)
:
ββ« (x : X), (starRingEnd β) (adjointCarlesonSum ((fun (x : π X) => t.π x) u) g x) * f xββ β€ β(C7_3_1_2 a) * densβ ((fun (x : π X) => t.π x) u) ^ 2β»ΒΉ * densβ ((fun (x : π X) => t.π x) u) ^ 2β»ΒΉ * MeasureTheory.eLpNorm f 2 MeasureTheory.volume * MeasureTheory.eLpNorm g 2 MeasureTheory.volume
theorem
TileStructure.Forest.indicator_adjoint_tree_estimate
{X : Type u_1}
{a : β}
{q : β}
{K : X β X β β}
{Οβ Οβ : X β β€}
{F G : Set X}
[MetricSpace X]
[ProofData a q K Οβ Οβ F G]
[TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)]
{n : β}
{t : Forest X n}
{u : π X}
{g : X β β}
(hg : MeasureTheory.BoundedCompactSupport g MeasureTheory.volume)
(h2g : Function.support g β G)
(hu : u β t)
:
MeasureTheory.eLpNorm (F.indicator (adjointCarlesonSum ((fun (x : π X) => t.π x) u) g)) 2 MeasureTheory.volume β€ β(C7_3_1_2 a) * densβ ((fun (x : π X) => t.π x) u) ^ 2β»ΒΉ * densβ ((fun (x : π X) => t.π x) u) ^ 2β»ΒΉ * MeasureTheory.eLpNorm g 2 MeasureTheory.volume
Part 2 of Lemma 7.4.2.
theorem
TileStructure.Forest.adjoint_tree_control
{X : Type u_1}
{a : β}
{q : β}
{K : X β X β β}
{Οβ Οβ : X β β€}
{F G : Set X}
[MetricSpace X]
[ProofData a q K Οβ Οβ F G]
[TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)]
{n : β}
{t : Forest X n}
{u : π X}
{f : X β β}
(hu : u β t)
(hf : MeasureTheory.BoundedCompactSupport f MeasureTheory.volume)
(h2f : Function.support f β G)
:
MeasureTheory.eLpNorm (fun (x : X) => t.adjointBoundaryOperator u f x) 2 MeasureTheory.volume β€ β(C7_4_3 a) * MeasureTheory.eLpNorm f 2 MeasureTheory.volume
Lemma 7.4.3.
theorem
TileStructure.Forest.overlap_implies_distance
{X : Type u_1}
{a : β}
{q : β}
{K : X β X β β}
{Οβ Οβ : X β β€}
{F G : Set X}
[MetricSpace X]
[ProofData a q K Οβ Οβ F G]
[TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)]
{n : β}
{t : Forest X n}
{uβ uβ p : π X}
(huβ : uβ β t)
(huβ : uβ β t)
(hu : uβ β uβ)
(h2u : π uβ β€ π uβ)
(hp : p β (fun (x : π X) => t.π x) uβ βͺ (fun (x : π X) => t.π x) uβ)
(hpuβ : Β¬Disjoint β(π p) β(π uβ))
:
Part 1 of Lemma 7.4.7.
theorem
TileStructure.Forest.π_subset_πβ
{X : Type u_1}
{a : β}
{q : β}
{K : X β X β β}
{Οβ Οβ : X β β€}
{F G : Set X}
[MetricSpace X]
[ProofData a q K Οβ Οβ F G]
[TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)]
{n : β}
{t : Forest X n}
{uβ uβ : π X}
(huβ : uβ β t)
(huβ : uβ β t)
(hu : uβ β uβ)
(h2u : π uβ β€ π uβ)
:
Part 2 of Lemma 7.4.7.