6.1. The density arguments #
This file contains the proofs of lemmas 6.1.1, 6.1.2 and 6.1.3 from the blueprint.
Main results #
tile_disjointness: Lemma 6.1.1.maximal_bound_antichain: Lemma 6.1.2.dens2_antichain: Lemma 6.1.3.
$\tilde{q}$ from definition 6.1.10, as a nonnegative real number. Note that
(nnqt : β)β»ΒΉ - 2β»ΒΉ = 2β»ΒΉ * qβ»ΒΉ.
Equations
- ShortVariables.termNnqt = Lean.ParserDescr.node `ShortVariables.termNnqt 1024 (Lean.ParserDescr.symbol "nnqt")
Instances For
theorem
tile_disjointness
{X : Type u_1}
{a : β}
{q : β}
{K : X β X β β}
{Οβ Οβ : X β β€}
{F G : Set X}
[MetricSpace X]
[ProofData a q K Οβ Οβ F G]
[TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)]
{π : Set (π X)}
(hπ : IsAntichain (fun (x1 x2 : π X) => x1 β€ x2) π)
{p p' : π X}
(hp : p β π)
(hp' : p' β π)
(hE : Β¬Disjoint (E p) (E p'))
:
Lemma 6.1.1.
theorem
norm_Ks_le'
{X : Type u_1}
{a : β}
{q : β}
{K : X β X β β}
{Οβ Οβ : X β β€}
{F G : Set X}
[MetricSpace X]
[ProofData a q K Οβ Οβ F G]
[TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)]
{x y : X}
{π : Set (π X)}
(p : βπ)
(hxE : x β E βp)
(hy : Ks (π° βp) x y β 0)
:
theorem
maximal_bound_antichain
{X : Type u_1}
{a : β}
{q : β}
{K : X β X β β}
{Οβ Οβ : X β β€}
{F G : Set X}
[MetricSpace X]
[ProofData a q K Οβ Οβ F G]
[TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)]
{π : Set (π X)}
(hπ : IsAntichain (fun (x1 x2 : π X) => x1 β€ x2) π)
{f : X β β}
(hfm : Measurable f)
(x : X)
:
Lemma 6.1.2.
def
Lemma6_1_3.π
{X : Type u_1}
{a : β}
{q : β}
{K : X β X β β}
{Οβ Οβ : X β β€}
{F G : Set X}
[MetricSpace X]
[ProofData a q K Οβ Οβ F G]
[TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)]
(π : Set (π X))
(u : X β β)
(x : X)
:
The maximal function used in the proof of Lemma 6.1.3
Equations
- Lemma6_1_3.π π = MB MeasureTheory.volume π π fun (π : π X) => 8 * β(defaultD a) ^ π° π
Instances For
def
Lemma6_1_3.qt
(X : Type u_1)
{a : β}
{q : β}
{K : X β X β β}
{Οβ Οβ : X β β€}
{F G : Set X}
[MetricSpace X]
[ProofData a q K Οβ Οβ F G]
:
$\tilde{q}$ from definition 6.1.10, as a real number.
Instances For
def
Lemma6_1_3.p
(X : Type u_1)
{a : β}
{q : β}
{K : X β X β β}
{Οβ Οβ : X β β€}
{F G : Set X}
[MetricSpace X]
[ProofData a q K Οβ Οβ F G]
:
Exponent used for the application of HΓΆlder's inequality in the proof of Lemma 6.1.3.
Equations
- Lemma6_1_3.p X = (3 / 2 - (Lemma6_1_3.qt X)β»ΒΉ)β»ΒΉ
Instances For
def
Lemma6_1_3.πp
{X : Type u_1}
{a : β}
{q : β}
{K : X β X β β}
{Οβ Οβ : X β β€}
{F G : Set X}
[MetricSpace X]
[ProofData a q K Οβ Οβ F G]
[TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)]
(π : Set (π X))
(p : β)
(u : X β β)
(x : X)
:
The p maximal function used in the proof.
Equations
- Lemma6_1_3.πp π p = maximalFunction MeasureTheory.volume π π (fun (π : π X) => 8 * β(defaultD a) ^ π° π) βp.toNNReal
Instances For
theorem
Lemma6_1_3.eLpNorm_πp_le
{X : Type u_1}
{a : β}
{q : β}
{K : X β X β β}
{Οβ Οβ : X β β€}
{F G : Set X}
[MetricSpace X]
[ProofData a q K Οβ Οβ F G]
[TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)]
(π : Set (π X))
{f : X β β}
(hf : MeasureTheory.MemLp f 2 MeasureTheory.volume)
:
MeasureTheory.eLpNorm (πp π (p X) f) 2 MeasureTheory.volume β€ β(C2_0_6 (β(defaultA a)) (p X).toNNReal 2) * MeasureTheory.eLpNorm f 2 MeasureTheory.volume
Maximal function bound needed in the proof
theorem
Lemma6_1_3.eLpNorm_π_le_eLpNorm_πp_mul
{X : Type u_1}
{a : β}
{q : β}
{K : X β X β β}
{Οβ Οβ : X β β€}
{F G : Set X}
[MetricSpace X]
[ProofData a q K Οβ Οβ F G]
[TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)]
(π : Set (π X))
{f : X β β}
(hf : Measurable f)
(hfF : β (x : X), βf xβ β€ F.indicator 1 x)
{p p' : β}
(hpp : p.HolderConjugate p')
:
MeasureTheory.eLpNorm (π π f) 2 MeasureTheory.volume β€ densβ π ^ p'β»ΒΉ * MeasureTheory.eLpNorm (πp π p f) 2 MeasureTheory.volume
A maximal function bound via an application of H"older's inequality
theorem
Lemma6_1_3.const_check
{X : Type u_1}
{a : β}
{q : β}
{K : X β X β β}
{Οβ Οβ : X β β€}
{F G : Set X}
[MetricSpace X]
[ProofData a q K Οβ Οβ F G]
:
Tedious check that the constants work out.
theorem
dens2_antichain
{X : Type u_1}
{a : β}
{q : β}
{K : X β X β β}
{Οβ Οβ : X β β€}
{F G : Set X}
[MetricSpace X]
[ProofData a q K Οβ Οβ F G]
[TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)]
{π : Set (π X)}
(hπ : IsAntichain (fun (x1 x2 : π X) => x1 β€ x2) π)
{f : X β β}
(hfF : β (x : X), βf xβ β€ F.indicator 1 x)
(hf : Measurable f)
{g : X β β}
(hgG : β (x : X), βg xβ β€ G.indicator 1 x)
(hg : Measurable g)
:
ββ« (x : X), (starRingEnd β) (g x) * carlesonSum π f xββ β€ β(C6_1_3 a (nnq X)) * densβ π ^ ((2 * β(nnq X) / (β(nnq X) + 1))β»ΒΉ - 2β»ΒΉ) * MeasureTheory.eLpNorm f 2 MeasureTheory.volume * MeasureTheory.eLpNorm g 2 MeasureTheory.volume
Lemma 6.1.3 (inequality 6.1.11).