Documentation

Carleson.Calculations

theorem sixteen_times_le_cube {a : } (ha : 4 a) :
16 * a a ^ 3
theorem four_times_sq_le_cube {a : } (ha : 4 a) :
4 * a ^ 2 a ^ 3
theorem add_le_pow_two {R : Type u_2} [Semiring R] [PartialOrder R] [IsOrderedRing R] {p q r s : } (hp : p r) (hq : q r) (hr : r + 1 s) :
2 ^ p + 2 ^ q 2 ^ s
theorem add_le_pow_two₃ {R : Type u_2} [Semiring R] [PartialOrder R] [IsOrderedRing R] {p q r s t : } (hp : p s) (hq : q s) (hr : r s + 1) (ht : s + 2 t) :
2 ^ p + 2 ^ q + 2 ^ r 2 ^ t
theorem add_le_pow_two_add_cube {a : } {R : Type u_2} [Semiring R] [PartialOrder R] [IsOrderedRing R] {p q r : } (ha : 4 a) (hp : p r) (hq : q r) :
2 ^ p + 2 ^ q 2 ^ (r + a ^ 3)
theorem calculation_1 {a : } (s : ) :
4 * (defaultD a) ^ (-2) * (defaultD a) ^ (s + 3) = 4 * (defaultD a) ^ (s + 1)
theorem calculation_2 {a : } (s : ) :
8⁻¹ * (defaultD a) ^ (-3) * (defaultD a) ^ (s + 3) = 8⁻¹ * (defaultD a) ^ s
theorem calculation_10 {a : } (h : 100 < (defaultD a)) :
(100 + 4 * (defaultD a) ^ (-2) + 8⁻¹ * (defaultD a) ^ (-3)) * (defaultD a) ^ (-1) < 2
theorem calculation_3 {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [PseudoMetricSpace X] [ProofData a q K σ₁ σ₂ F G] {x y : } (h : x + 3 < y) :
100 * (defaultD a) ^ (x + 3) + 4 * (defaultD a) ^ (-2) * (defaultD a) ^ (x + 3) + 8⁻¹ * (defaultD a) ^ (-3) * (defaultD a) ^ (x + 3) + 8 * (defaultD a) ^ y < 10 * (defaultD a) ^ y
theorem calculation_4 {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [PseudoMetricSpace X] [ProofData a q K σ₁ σ₂ F G] {s_1 s_2 s_3 : } {dist_a dist_b dist_c dist_d : } (lt_1 : dist_a < 100 * (defaultD a) ^ (s_1 + 3)) (lt_2 : dist_b < 8 * (defaultD a) ^ s_3) (lt_3 : dist_c < 8⁻¹ * (defaultD a) ^ s_1) (lt_4 : dist_d < 4 * (defaultD a) ^ s_2) (three : s_1 + 3 < s_3) (plusOne : s_2 = s_1 + 1) :
dist_a + dist_d + dist_c + dist_b < 10 * (defaultD a) ^ s_3
theorem calculation_logD_64 {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [PseudoMetricSpace X] [ProofData a q K σ₁ σ₂ F G] :
Real.logb (↑(defaultD a)) 64 < 1
theorem calculation_5 {a : } {dist_1 dist_2 : } (h : dist_1 (2 ^ a) ^ 6 * dist_2) :
2 ^ (-𝕔 * a) * dist_1 2 ^ (-(𝕔 - 6) * a) * dist_2
theorem calculation_6 (a : ) (s : ) :
(defaultD a) ^ (s + 3) = (defaultD a) ^ (s + 2) * (defaultD a)
theorem calculation_7 (a : ) (s : ) :
100 * ((defaultD a) ^ (s + 2) * (defaultD a)) = (defaultA a) ^ (𝕔 * a) * (100 * (defaultD a) ^ (s + 2))
theorem calculation_8 {a : } {dist_1 dist_2 : } (h : dist_1 * 2 ^ (𝕔 * a) dist_2) :
dist_1 2 ^ (-𝕔 * a) * dist_2
theorem calculation_9 {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [PseudoMetricSpace X] [ProofData a q K σ₁ σ₂ F G] (h : 1 2 ^ (-(𝕔 - 6) * a)) :
theorem calculation_11 {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [PseudoMetricSpace X] [ProofData a q K σ₁ σ₂ F G] (s : ) :
100 * (defaultD a) ^ (s + 2) + 4 * (defaultD a) ^ (s + 1) < 128 * (defaultD a) ^ (s + 2)
theorem calculation_12 {a : } (s : ) :
128 * (defaultD a) ^ (s + 2) = 2 ^ (2 * 𝕔 * a ^ 2 + 4) * (8 * (defaultD a) ^ s)
theorem calculation_13 {a : } :
2 ^ (2 * 𝕔 * a ^ 3 + 4 * a) = (defaultA a) ^ (2 * 𝕔 * a ^ 2 + 4)
theorem calculation_14 {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [PseudoMetricSpace X] [ProofData a q K σ₁ σ₂ F G] (n : ) :
2 ^ ((defaultZ a) * n / 2 - (2 * 𝕔 + 1) * a ^ 3) 2 ^ ((defaultZ a) * n / 2 - (2 * 𝕔 * a ^ 3 + 4 * a))
theorem calculation_15 {a : } {dist zon : } (h : 2 ^ zon 2 ^ (2 * 𝕔 * a ^ 3 + 4 * a) * dist) :
2 ^ (zon - (2 * 𝕔 * a ^ 3 + 4 * a)) dist
theorem calculation_16 {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [PseudoMetricSpace X] [ProofData a q K σ₁ σ₂ F G] (s : ) :
4 * (defaultD a) ^ s < 100 * (defaultD a) ^ (s + 1)
theorem calculation_7_7_4 {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [PseudoMetricSpace X] [ProofData a q K σ₁ σ₂ F G] {n : } :
1 2 ^ (defaultZ a * (n + 1)) - 4
theorem near_1_geometric_bound {t : } (ht : t Set.Icc 0 1) :

A bound on the sum of a geometric series whose ratio is close to 1.

theorem calculation_convexity_bound {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [PseudoMetricSpace X] [ProofData a q K σ₁ σ₂ F G] {n : } {t : } (ht : t Set.Icc 0 1) :
kFinset.range n, ((defaultD a) ^ (-t)) ^ k 2 * (ENNReal.ofReal t)⁻¹
theorem calculation_7_6_2 {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [PseudoMetricSpace X] [ProofData a q K σ₁ σ₂ F G] {n : } :
kFinset.range n, ((defaultD a) ^ (-(defaultκ a / 2))) ^ k 2 ^ (10 * a + 2)
theorem calculation_150 {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [PseudoMetricSpace X] [ProofData a q K σ₁ σ₂ F G] :
𝕔 * (3 / 2) * a ^ 2 * defaultκ a 1
theorem sq_le_two_pow_of_four_le {a : } (a4 : 4 a) :
a ^ 2 2 ^ a
theorem calculation_6_1_6 {a : } (a4 : 4 a) :
8 * a ^ 4 2 ^ (2 * a + 3)