Documentation

Mathlib.Data.Real.ConjExponents

Real conjugate exponents #

This file defines Hölder triple and Hölder conjugate exponents in and ℝ≥0. Real numbers p, q and r form a Hölder triple if 0 < p and 0 < q and p⁻¹ + q⁻¹ = r⁻¹ (which of course implies 0 < r). We say p and q are Hölder conjugate if p, q and 1 are a Hölder triple. In this case, 1 < p and 1 < q. This property shows up often in analysis, especially when dealing with L^p spaces.

These notions mimic the same notions for extended nonnegative reals where p q r : ℝ≥0∞ are allowed to take the values 0 and .

Main declarations #

TODO #

structure Real.HolderTriple (p q r : ) :

Real numbers p q r : ℝ are said to be a Hölder triple if p and q are positive and p⁻¹ + q⁻¹ = r⁻¹.

theorem Real.holderTriple_iff (p q r : ) :
p.HolderTriple q r p⁻¹ + q⁻¹ = r⁻¹ 0 < p 0 < q
@[reducible, inline]
abbrev Real.HolderConjugate (p q : ) :

Real numbers p q : ℝ are Hölder conjugate if they are positive and satisfy the equality p⁻¹ + q⁻¹ = 1. This is an abbreviation for Real.HolderTriple p q 1. This condition shows up in many theorems in analysis, notably related to L^p norms.

It is equivalent that 1 < p and p⁻¹ + q⁻¹ = 1. See Real.holderConjugate_iff.

Equations

The conjugate exponent of p is q = p / (p-1), so that p⁻¹ + q⁻¹ = 1.

Equations
theorem Real.HolderTriple.of_pos {p q : } (hp : 0 < p) (hq : 0 < q) :
theorem Real.HolderTriple.symm {p q r : } (h : p.HolderTriple q r) :
theorem Real.HolderTriple.pos {p q r : } (h : p.HolderTriple q r) :
0 < p
theorem Real.HolderTriple.nonneg {p q r : } (h : p.HolderTriple q r) :
0 p
theorem Real.HolderTriple.ne_zero {p q r : } (h : p.HolderTriple q r) :
p 0
theorem Real.HolderTriple.inv_pos {p q r : } (h : p.HolderTriple q r) :
0 < p⁻¹
theorem Real.HolderTriple.inv_nonneg {p q r : } (h : p.HolderTriple q r) :
theorem Real.HolderTriple.one_div_pos {p q r : } (h : p.HolderTriple q r) :
0 < 1 / p
theorem Real.HolderTriple.one_div_nonneg {p q r : } (h : p.HolderTriple q r) :
0 1 / p
theorem Real.HolderTriple.one_div_ne_zero {p q r : } (h : p.HolderTriple q r) :
1 / p 0
theorem Real.HolderTriple.pos' {p q r : } (h : p.HolderTriple q r) :
0 < r

For r, instead of p

theorem Real.HolderTriple.nonneg' {p q r : } (h : p.HolderTriple q r) :
0 r

For r, instead of p

theorem Real.HolderTriple.ne_zero' {p q r : } (h : p.HolderTriple q r) :
r 0

For r, instead of p

theorem Real.HolderTriple.inv_pos' {p q r : } (h : p.HolderTriple q r) :
0 < r⁻¹

For r, instead of p

theorem Real.HolderTriple.inv_nonneg' {p q r : } (h : p.HolderTriple q r) :

For r, instead of p

theorem Real.HolderTriple.inv_ne_zero' {p q r : } (h : p.HolderTriple q r) :

For r, instead of p

theorem Real.HolderTriple.one_div_pos' {p q r : } (h : p.HolderTriple q r) :
0 < 1 / r

For r, instead of p

theorem Real.HolderTriple.one_div_nonneg' {p q r : } (h : p.HolderTriple q r) :
0 1 / r

For r, instead of p

theorem Real.HolderTriple.one_div_ne_zero' {p q r : } (h : p.HolderTriple q r) :
1 / r 0

For r, instead of p

theorem Real.HolderTriple.one_div_add_one_div {p q r : } (h : p.HolderTriple q r) :
1 / p + 1 / q = 1 / r
theorem Real.HolderTriple.one_div_eq {p q r : } (h : p.HolderTriple q r) :
1 / r = 1 / p + 1 / q
theorem Real.HolderTriple.lt {p q r : } (h : p.HolderTriple q r) :
r < p
theorem Real.HolderConjugate.conjugate_eq {p q : } (h : p.HolderConjugate q) :
q = p / (p - 1)
theorem Real.HolderConjugate.mul_eq_add {p q : } (h : p.HolderConjugate q) :
p * q = p + q
theorem Real.HolderConjugate.inv_inv {a b : } (ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) :
theorem Real.HolderConjugate.inv_one_sub_inv {a : } (ha₀ : 0 < a) (ha₁ : a < 1) :
theorem Real.HolderConjugate.one_sub_inv_inv {a : } (ha₀ : 0 < a) (ha₁ : a < 1) :
theorem Real.holderConjugate_iff_eq_conjExponent {p q : } (hp : 1 < p) :
p.HolderConjugate q q = p / (p - 1)
theorem Real.holderConjugate_one_div {a b : } (ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) :
(1 / a).HolderConjugate (1 / b)
structure NNReal.HolderTriple (p q r : NNReal) :

Nonnegative real numbers p q r : ℝ≥0 are said to be a Hölder triple if p and q are positive and p⁻¹ + q⁻¹ = r⁻¹.

@[reducible, inline]

Nonnegative real numbers p q : ℝ≥0 are Hölder conjugate if they are positive and satisfy the equality p⁻¹ + q⁻¹ = 1. This is an abbreviation for NNReal.HolderTriple p q 1. This condition shows up in many theorems in analysis, notably related to L^p norms.

It is equivalent that 1 < p and p⁻¹ + q⁻¹ = 1. See NNReal.holderConjugate_iff.

Equations

The conjugate exponent of p is q = p/(p-1), so that p⁻¹ + q⁻¹ = 1.

Equations
@[simp]
theorem NNReal.holderTriple_coe_iff {p q r : NNReal} :
(↑p).HolderTriple q r p.HolderTriple q r
theorem NNReal.HolderTriple.coe {p q r : NNReal} :
p.HolderTriple q r(↑p).HolderTriple q r

Alias of the reverse direction of NNReal.holderTriple_coe_iff.

Alias of the reverse direction of NNReal.holderConjugate_coe_iff.

theorem NNReal.HolderTriple.of_pos {p q : NNReal} (hp : 0 < p) (hq : 0 < q) :
theorem NNReal.HolderTriple.symm {p q r : NNReal} (h : p.HolderTriple q r) :
theorem NNReal.HolderTriple.pos {p q r : NNReal} (h : p.HolderTriple q r) :
0 < p
theorem NNReal.HolderTriple.nonneg {p q r : NNReal} (h : p.HolderTriple q r) :
0 p
theorem NNReal.HolderTriple.ne_zero {p q r : NNReal} (h : p.HolderTriple q r) :
p 0
theorem NNReal.HolderTriple.inv_pos {p q r : NNReal} (h : p.HolderTriple q r) :
0 < p⁻¹
theorem NNReal.HolderTriple.one_div_pos {p q r : NNReal} (h : p.HolderTriple q r) :
0 < 1 / p
theorem NNReal.HolderTriple.pos' {p q r : NNReal} (h : p.HolderTriple q r) :
0 < r

For r, instead of p

theorem NNReal.HolderTriple.nonneg' {p q r : NNReal} (h : p.HolderTriple q r) :
0 r

For r, instead of p

theorem NNReal.HolderTriple.ne_zero' {p q r : NNReal} (h : p.HolderTriple q r) :
r 0

For r, instead of p

theorem NNReal.HolderTriple.inv_pos' {p q r : NNReal} (h : p.HolderTriple q r) :
0 < r⁻¹

For r, instead of p

theorem NNReal.HolderTriple.inv_nonneg' {p q r : NNReal} (h : p.HolderTriple q r) :

For r, instead of p

For r, instead of p

theorem NNReal.HolderTriple.one_div_pos' {p q r : NNReal} (h : p.HolderTriple q r) :
0 < 1 / r

For r, instead of p

theorem NNReal.HolderTriple.one_div_nonneg' {p q r : NNReal} (h : p.HolderTriple q r) :
0 1 / r

For r, instead of p

theorem NNReal.HolderTriple.one_div_ne_zero' {p q r : NNReal} (h : p.HolderTriple q r) :
1 / r 0

For r, instead of p

theorem NNReal.HolderTriple.one_div_add_one_div {p q r : NNReal} (h : p.HolderTriple q r) :
1 / p + 1 / q = 1 / r
theorem NNReal.HolderTriple.one_div_eq {p q r : NNReal} (h : p.HolderTriple q r) :
1 / r = 1 / p + 1 / q
theorem NNReal.HolderTriple.lt {p q r : NNReal} (h : p.HolderTriple q r) :
r < p
theorem NNReal.HolderConjugate.inv_inv {a b : NNReal} (ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) :
theorem NNReal.HolderConjugate.inv_one_sub_inv {a : NNReal} (ha₀ : 0 < a) (ha₁ : a < 1) :
theorem NNReal.HolderConjugate.one_sub_inv_inv {a : NNReal} (ha₀ : 0 < a) (ha₁ : a < 1) :
theorem NNReal.holderConjugate_one_div {a b : NNReal} (ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) :
(1 / a).HolderConjugate (1 / b)
noncomputable def ENNReal.conjExponent (p : ENNReal) :

The conjugate exponent of p is q = 1 + (p - 1)⁻¹, so that p⁻¹ + q⁻¹ = 1.

Equations
theorem ENNReal.coe_conjExponent {p : NNReal} (hp : 1 < p) :
@[simp]
theorem ENNReal.holderTriple_coe_iff {p q r : NNReal} (hr : r 0) :
(↑p).HolderTriple q r p.HolderTriple q r
theorem NNReal.HolderTriple.coe_ennreal {p q r : NNReal} (hr : r 0) :
p.HolderTriple q r(↑p).HolderTriple q r

Alias of the reverse direction of ENNReal.holderTriple_coe_iff.

Alias of the reverse direction of ENNReal.holderConjugate_coe_iff.

theorem ENNReal.HolderTriple.toReal {p q : ENNReal} (r : ENNReal) (hp : 0 < p.toReal) (hq : 0 < q.toReal) [p.HolderTriple q r] :
@[deprecated Real.HolderConjugate (since := "2025-03-14")]

Alias of Real.HolderConjugate.


Real numbers p q : ℝ are Hölder conjugate if they are positive and satisfy the equality p⁻¹ + q⁻¹ = 1. This is an abbreviation for Real.HolderTriple p q 1. This condition shows up in many theorems in analysis, notably related to L^p norms.

It is equivalent that 1 < p and p⁻¹ + q⁻¹ = 1. See Real.holderConjugate_iff.

Equations
@[deprecated Real.holderConjugate_iff (since := "2025-03-14")]

Alias of Real.holderConjugate_iff.

@[deprecated Real.HolderTriple.lt (since := "2025-03-14")]
theorem Real.IsConjExponent.one_lt {p q r : } (h : p.HolderTriple q r) :
r < p

Alias of Real.HolderTriple.lt.

@[deprecated Real.HolderConjugate.inv_add_inv_eq_one (since := "2025-03-14")]

Alias of Real.HolderConjugate.inv_add_inv_eq_one.

@[deprecated Real.HolderTriple.pos (since := "2025-03-14")]
theorem Real.IsConjExponent.pos {p q r : } (h : p.HolderTriple q r) :
0 < p

Alias of Real.HolderTriple.pos.

@[deprecated Real.HolderTriple.nonneg (since := "2025-03-14")]
theorem Real.IsConjExponent.nonneg {p q r : } (h : p.HolderTriple q r) :
0 p

Alias of Real.HolderTriple.nonneg.

@[deprecated Real.HolderTriple.ne_zero (since := "2025-03-14")]
theorem Real.IsConjExponent.ne_zero {p q r : } (h : p.HolderTriple q r) :
p 0

Alias of Real.HolderTriple.ne_zero.

@[deprecated Real.HolderConjugate.sub_one_pos (since := "2025-03-14")]
theorem Real.IsConjExponent.sub_one_pos {p q : } (h : p.HolderConjugate q) :
0 < p - 1

Alias of Real.HolderConjugate.sub_one_pos.

@[deprecated Real.HolderConjugate.sub_one_ne_zero (since := "2025-03-14")]

Alias of Real.HolderConjugate.sub_one_ne_zero.

@[deprecated Real.HolderTriple.inv_pos (since := "2025-03-14")]
theorem Real.IsConjExponent.inv_pos {p q r : } (h : p.HolderTriple q r) :
0 < p⁻¹

Alias of Real.HolderTriple.inv_pos.

@[deprecated Real.HolderTriple.inv_nonneg (since := "2025-03-14")]
theorem Real.IsConjExponent.inv_nonneg {p q r : } (h : p.HolderTriple q r) :

Alias of Real.HolderTriple.inv_nonneg.

@[deprecated Real.HolderTriple.inv_ne_zero (since := "2025-03-14")]
theorem Real.IsConjExponent.inv_ne_zero {p q r : } (h : p.HolderTriple q r) :

Alias of Real.HolderTriple.inv_ne_zero.

@[deprecated Real.HolderTriple.one_div_pos (since := "2025-03-14")]
theorem Real.IsConjExponent.one_div_pos {p q r : } (h : p.HolderTriple q r) :
0 < 1 / p

Alias of Real.HolderTriple.one_div_pos.

@[deprecated Real.HolderTriple.one_div_nonneg (since := "2025-03-14")]
theorem Real.IsConjExponent.one_div_nonneg {p q r : } (h : p.HolderTriple q r) :
0 1 / p

Alias of Real.HolderTriple.one_div_nonneg.

@[deprecated Real.HolderTriple.one_div_ne_zero (since := "2025-03-14")]
theorem Real.IsConjExponent.one_div_ne_zero {p q r : } (h : p.HolderTriple q r) :
1 / p 0

Alias of Real.HolderTriple.one_div_ne_zero.

@[deprecated Real.HolderConjugate.conjugate_eq (since := "2025-03-14")]
theorem Real.IsConjExponent.conj_eq {p q : } (h : p.HolderConjugate q) :
q = p / (p - 1)

Alias of Real.HolderConjugate.conjugate_eq.

@[deprecated Real.HolderConjugate.conjExponent_eq (since := "2025-03-14")]

Alias of Real.HolderConjugate.conjExponent_eq.

@[deprecated Real.HolderConjugate.one_sub_inv (since := "2025-03-14")]

Alias of Real.HolderConjugate.one_sub_inv.

@[deprecated Real.HolderConjugate.inv_sub_one (since := "2025-03-14")]

Alias of Real.HolderConjugate.inv_sub_one.

@[deprecated Real.HolderConjugate.sub_one_mul_conj (since := "2025-03-14")]
theorem Real.IsConjExponent.sub_one_mul_conj {p q : } (h : p.HolderConjugate q) :
(p - 1) * q = p

Alias of Real.HolderConjugate.sub_one_mul_conj.

@[deprecated Real.HolderConjugate.mul_eq_add (since := "2025-03-14")]
theorem Real.IsConjExponent.mul_eq_add {p q : } (h : p.HolderConjugate q) :
p * q = p + q

Alias of Real.HolderConjugate.mul_eq_add.

@[deprecated Real.HolderConjugate.symm (since := "2025-03-14")]

Alias of Real.HolderConjugate.symm.

@[deprecated Real.HolderConjugate.div_conj_eq_sub_one (since := "2025-03-14")]
theorem Real.IsConjExponent.div_conj_eq_sub_one {p q : } (h : p.HolderConjugate q) :
p / q = p - 1

Alias of Real.HolderConjugate.div_conj_eq_sub_one.

@[deprecated Real.HolderConjugate.inv_inv (since := "2025-03-14")]
theorem Real.IsConjExponent.inv_inv {a b : } (ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) :

Alias of Real.HolderConjugate.inv_inv.

@[deprecated Real.HolderConjugate.inv_one_sub_inv (since := "2025-03-14")]
theorem Real.IsConjExponent.inv_one_sub_inv {a : } (ha₀ : 0 < a) (ha₁ : a < 1) :

Alias of Real.HolderConjugate.inv_one_sub_inv.

@[deprecated Real.HolderConjugate.one_sub_inv_inv (since := "2025-03-14")]
theorem Real.IsConjExponent.one_sub_inv_inv {a : } (ha₀ : 0 < a) (ha₁ : a < 1) :

Alias of Real.HolderConjugate.one_sub_inv_inv.

@[deprecated Real.HolderConjugate.inv_add_inv_ennreal (since := "2025-03-14")]

Alias of Real.HolderConjugate.inv_add_inv_ennreal.

@[deprecated Real.holderConjugate_comm (since := "2025-03-14")]

Alias of Real.holderConjugate_comm.

@[deprecated Real.holderConjugate_iff_eq_conjExponent (since := "2025-03-14")]
theorem Real.isConjExponent_iff_eq_conjExponent {p q : } (hp : 1 < p) :
p.HolderConjugate q q = p / (p - 1)

Alias of Real.holderConjugate_iff_eq_conjExponent.

@[deprecated Real.HolderConjugate.conjExponent (since := "2025-03-14")]

Alias of Real.HolderConjugate.conjExponent.

@[deprecated Real.holderConjugate_one_div (since := "2025-03-14")]
theorem Real.isConjExponent_one_div {a b : } (ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) :
(1 / a).HolderConjugate (1 / b)

Alias of Real.holderConjugate_one_div.

@[deprecated NNReal.HolderConjugate (since := "2025-03-14")]

Alias of NNReal.HolderConjugate.


Nonnegative real numbers p q : ℝ≥0 are Hölder conjugate if they are positive and satisfy the equality p⁻¹ + q⁻¹ = 1. This is an abbreviation for NNReal.HolderTriple p q 1. This condition shows up in many theorems in analysis, notably related to L^p norms.

It is equivalent that 1 < p and p⁻¹ + q⁻¹ = 1. See NNReal.holderConjugate_iff.

Equations
@[deprecated NNReal.holderConjugate_iff (since := "2025-03-14")]

Alias of NNReal.holderConjugate_iff.

@[deprecated NNReal.HolderTriple.lt (since := "2025-03-14")]
theorem NNReal.IsConjExponent.one_lt {p q r : NNReal} (h : p.HolderTriple q r) :
r < p

Alias of NNReal.HolderTriple.lt.

@[deprecated NNReal.HolderConjugate.inv_add_inv_eq_one (since := "2025-03-14")]

Alias of NNReal.HolderConjugate.inv_add_inv_eq_one.

@[deprecated NNReal.holderConjugate_coe_iff (since := "2025-03-14")]

Alias of NNReal.holderConjugate_coe_iff.

@[deprecated NNReal.HolderConjugate.coe (since := "2025-03-14")]

Alias of the reverse direction of NNReal.holderConjugate_coe_iff.


Alias of the reverse direction of NNReal.holderConjugate_coe_iff.

@[deprecated NNReal.HolderTriple.lt (since := "2025-03-14")]
theorem NNReal.IsConjExponent.one_le {p q r : NNReal} (h : p.HolderTriple q r) :
r < p

Alias of NNReal.HolderTriple.lt.

@[deprecated NNReal.HolderTriple.pos (since := "2025-03-14")]
theorem NNReal.IsConjExponent.pos {p q r : NNReal} (h : p.HolderTriple q r) :
0 < p

Alias of NNReal.HolderTriple.pos.

@[deprecated NNReal.HolderTriple.nonneg (since := "2025-03-14")]
theorem NNReal.IsConjExponent.nonneg {p q r : NNReal} (h : p.HolderTriple q r) :
0 p

Alias of NNReal.HolderTriple.nonneg.

@[deprecated NNReal.HolderTriple.ne_zero (since := "2025-03-14")]
theorem NNReal.IsConjExponent.ne_zero {p q r : NNReal} (h : p.HolderTriple q r) :
p 0

Alias of NNReal.HolderTriple.ne_zero.

@[deprecated NNReal.HolderConjugate.sub_one_pos (since := "2025-03-14")]

Alias of NNReal.HolderConjugate.sub_one_pos.

@[deprecated NNReal.HolderConjugate.sub_one_ne_zero (since := "2025-03-14")]

Alias of NNReal.HolderConjugate.sub_one_ne_zero.

@[deprecated NNReal.HolderTriple.inv_pos (since := "2025-03-14")]
theorem NNReal.IsConjExponent.inv_pos {p q r : NNReal} (h : p.HolderTriple q r) :
0 < p⁻¹

Alias of NNReal.HolderTriple.inv_pos.

@[deprecated NNReal.HolderTriple.inv_nonneg (since := "2025-03-14")]

Alias of NNReal.HolderTriple.inv_nonneg.

@[deprecated NNReal.HolderTriple.inv_ne_zero (since := "2025-03-14")]

Alias of NNReal.HolderTriple.inv_ne_zero.

@[deprecated NNReal.HolderTriple.one_div_pos (since := "2025-03-14")]
theorem NNReal.IsConjExponent.one_div_pos {p q r : NNReal} (h : p.HolderTriple q r) :
0 < 1 / p

Alias of NNReal.HolderTriple.one_div_pos.

@[deprecated NNReal.HolderTriple.one_div_nonneg (since := "2025-03-14")]
theorem NNReal.IsConjExponent.one_div_nonneg {p q r : NNReal} (h : p.HolderTriple q r) :
0 1 / p

Alias of NNReal.HolderTriple.one_div_nonneg.

@[deprecated NNReal.HolderTriple.one_div_ne_zero (since := "2025-03-14")]
theorem NNReal.IsConjExponent.one_div_ne_zero {p q r : NNReal} (h : p.HolderTriple q r) :
1 / p 0

Alias of NNReal.HolderTriple.one_div_ne_zero.

@[deprecated NNReal.HolderConjugate.conjugate_eq (since := "2025-03-14")]
theorem NNReal.IsConjExponent.conj_eq {p q : NNReal} (h : p.HolderConjugate q) :
q = p / (p - 1)

Alias of NNReal.HolderConjugate.conjugate_eq.

@[deprecated NNReal.HolderConjugate.conjExponent_eq (since := "2025-03-14")]

Alias of NNReal.HolderConjugate.conjExponent_eq.

@[deprecated NNReal.HolderConjugate.one_sub_inv (since := "2025-03-14")]

Alias of NNReal.HolderConjugate.one_sub_inv.

@[deprecated NNReal.HolderConjugate.sub_one_mul_conj (since := "2025-03-14")]
theorem NNReal.IsConjExponent.sub_one_mul_conj {p q : NNReal} (h : p.HolderConjugate q) :
(p - 1) * q = p

Alias of NNReal.HolderConjugate.sub_one_mul_conj.

@[deprecated NNReal.HolderConjugate.mul_eq_add (since := "2025-03-14")]
theorem NNReal.IsConjExponent.mul_eq_add {p q : NNReal} (h : p.HolderConjugate q) :
p * q = p + q

Alias of NNReal.HolderConjugate.mul_eq_add.

@[deprecated NNReal.HolderConjugate.symm (since := "2025-03-14")]

Alias of NNReal.HolderConjugate.symm.

@[deprecated NNReal.HolderConjugate.div_conj_eq_sub_one (since := "2025-03-14")]

Alias of NNReal.HolderConjugate.div_conj_eq_sub_one.

@[deprecated NNReal.HolderConjugate.inv_inv (since := "2025-03-14")]
theorem NNReal.IsConjExponent.inv_inv {a b : NNReal} (ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) :

Alias of NNReal.HolderConjugate.inv_inv.

@[deprecated NNReal.HolderConjugate.inv_one_sub_inv (since := "2025-03-14")]
theorem NNReal.IsConjExponent.inv_one_sub_inv {a : NNReal} (ha₀ : 0 < a) (ha₁ : a < 1) :

Alias of NNReal.HolderConjugate.inv_one_sub_inv.

@[deprecated NNReal.HolderConjugate.one_sub_inv_inv (since := "2025-03-14")]
theorem NNReal.IsConjExponent.one_sub_inv_inv {a : NNReal} (ha₀ : 0 < a) (ha₁ : a < 1) :

Alias of NNReal.HolderConjugate.one_sub_inv_inv.

@[deprecated NNReal.HolderConjugate.inv_add_inv_ennreal (since := "2025-03-14")]

Alias of NNReal.HolderConjugate.inv_add_inv_ennreal.

@[deprecated NNReal.holderConjugate_comm (since := "2025-03-14")]

Alias of NNReal.holderConjugate_comm.

@[deprecated NNReal.holderConjugate_iff_eq_conjExponent (since := "2025-03-14")]
theorem NNReal.isConjExponent_iff_eq_conjExponent {p q : NNReal} (hp : 1 < p) :
p.HolderConjugate q q = p / (p - 1)

Alias of NNReal.holderConjugate_iff_eq_conjExponent.

@[deprecated NNReal.HolderConjugate.conjExponent (since := "2025-03-14")]

Alias of NNReal.HolderConjugate.conjExponent.

@[deprecated NNReal.holderConjugate_one_div (since := "2025-03-14")]
theorem NNReal.isConjExponent_one_div {a b : NNReal} (ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) :
(1 / a).HolderConjugate (1 / b)

Alias of NNReal.holderConjugate_one_div.

@[deprecated Real.HolderTriple.toNNReal (since := "2025-03-14")]

Alias of Real.HolderTriple.toNNReal.

@[deprecated ENNReal.HolderConjugate (since := "2025-03-14")]

Alias of ENNReal.HolderConjugate.


An abbreviation for ENNReal.HolderTriple p q 1, this class states p⁻¹ + q⁻¹ = 1.

Equations
@[deprecated ENNReal.holderConjugate_iff (since := "2025-03-14")]

Alias of ENNReal.holderConjugate_iff.

@[deprecated ENNReal.holderConjugate_coe_iff (since := "2025-03-14")]

Alias of ENNReal.holderConjugate_coe_iff.

@[deprecated NNReal.HolderConjugate.coe_ennreal (since := "2025-03-14")]

Alias of the reverse direction of ENNReal.holderConjugate_coe_iff.


Alias of the reverse direction of ENNReal.holderConjugate_coe_iff.

@[deprecated ENNReal.HolderConjugate.conjExponent (since := "2025-03-14")]

Alias of ENNReal.HolderConjugate.conjExponent.

@[deprecated ENNReal.HolderConjugate.symm (since := "2025-03-14")]

Alias of ENNReal.HolderConjugate.symm.

@[deprecated ENNReal.HolderTriple.le (since := "2025-03-14")]
theorem ENNReal.IsConjExponent.one_le (p q r : ENNReal) [p.HolderTriple q r] :
r p

Alias of ENNReal.HolderTriple.le.

@[deprecated ENNReal.HolderConjugate.pos (since := "2025-03-14")]

Alias of ENNReal.HolderConjugate.pos.

@[deprecated ENNReal.HolderConjugate.ne_zero (since := "2025-03-14")]

Alias of ENNReal.HolderConjugate.ne_zero.

@[deprecated ENNReal.HolderConjugate.one_sub_inv (since := "2025-03-14")]

Alias of ENNReal.HolderConjugate.one_sub_inv.

@[deprecated ENNReal.HolderConjugate.conjExponent_eq (since := "2025-03-14")]

Alias of ENNReal.HolderConjugate.conjExponent_eq.

@[deprecated ENNReal.HolderConjugate.conj_eq (since := "2025-03-14")]
theorem ENNReal.IsConjExponent.conj_eq {p q : ENNReal} [h : p.HolderConjugate q] :
q = 1 + (p - 1)⁻¹

Alias of ENNReal.HolderConjugate.conj_eq.

@[deprecated ENNReal.HolderConjugate.mul_eq_add (since := "2025-03-14")]
theorem ENNReal.IsConjExponent.mul_eq_add {p q : ENNReal} [h : p.HolderConjugate q] :
p * q = p + q

Alias of ENNReal.HolderConjugate.mul_eq_add.

@[deprecated ENNReal.HolderConjugate.div_conj_eq_sub_one (since := "2025-03-14")]

Alias of ENNReal.HolderConjugate.div_conj_eq_sub_one.

@[deprecated ENNReal.HolderConjugate.inv_inv (since := "2025-03-14")]

Alias of ENNReal.HolderConjugate.inv_inv.

@[deprecated ENNReal.HolderConjugate.inv_one_sub_inv (since := "2025-03-14")]

Alias of ENNReal.HolderConjugate.inv_one_sub_inv.

@[deprecated ENNReal.HolderConjugate.one_sub_inv_inv (since := "2025-03-14")]

Alias of ENNReal.HolderConjugate.one_sub_inv_inv.

@[deprecated ENNReal.HolderConjugate.top_one (since := "2025-03-14")]

Alias of ENNReal.HolderConjugate.top_one.

@[deprecated ENNReal.HolderConjugate.one_top (since := "2025-03-14")]

Alias of ENNReal.HolderConjugate.one_top.