The function ψ
The function ψ used as a basis for a dyadic partition of unity.
Equations
- ShortVariables.termψ = Lean.ParserDescr.node `ShortVariables.termψ 1024 (Lean.ParserDescr.symbol "ψ")
Instances For
theorem
kernel_bound
{X : Type u_1}
{a : ℕ}
{K : X → X → ℂ}
[PseudoMetricSpace X]
[KernelProofData a K]
{s : ℤ}
{x y : X}
:
Equation (1.1.11) in the blueprint
theorem
DoublingMeasure.volume_ball_two_le_same_repeat
{X : Type u_1}
{a : ℕ}
{K : X → X → ℂ}
[PseudoMetricSpace X]
[KernelProofData a K]
(x : X)
(r : ℝ)
(n : ℕ)
:
MeasureTheory.volume (Metric.ball x (2 ^ n * r)) ≤ ↑(defaultA a) ^ n * MeasureTheory.volume (Metric.ball x r)
Apply volume_ball_two_le_same n times.
theorem
Metric.measure_ball_pos_nnreal
{X : Type u_1}
{a : ℕ}
{K : X → X → ℂ}
[PseudoMetricSpace X]
[KernelProofData a K]
(x : X)
(r : ℝ)
(hr : r > 0)
:
theorem
Metric.measure_ball_pos_real
{X : Type u_1}
{a : ℕ}
{K : X → X → ℂ}
[PseudoMetricSpace X]
[KernelProofData a K]
(x : X)
(r : ℝ)
(hr : r > 0)
:
theorem
enorm_Ks_le
{X : Type u_1}
{a : ℕ}
{K : X → X → ℂ}
[PseudoMetricSpace X]
[KernelProofData a K]
{s : ℤ}
{x y : X}
:
Lemma 2.1.3 part 2, equation (2.1.3)
theorem
enorm_Ks_sub_Ks_le_of_nonzero
{X : Type u_1}
{a : ℕ}
{K : X → X → ℂ}
[PseudoMetricSpace X]
[KernelProofData a K]
{s : ℤ}
{x y y' : X}
(hK : Ks s x y ≠ 0)
:
theorem
enorm_Ks_sub_Ks_le
{X : Type u_1}
{a : ℕ}
{K : X → X → ℂ}
[PseudoMetricSpace X]
[KernelProofData a K]
{s : ℤ}
{x y y' : X}
:
Lemma 2.1.3 part 3, equation (2.1.4)
theorem
stronglyMeasurable_Ks
{X : Type u_1}
{a : ℕ}
{K : X → X → ℂ}
[PseudoMetricSpace X]
[KernelProofData a K]
{s : ℤ}
:
MeasureTheory.StronglyMeasurable fun (x : X × X) => Ks s x.1 x.2
theorem
measurable_Ks
{X : Type u_1}
{a : ℕ}
{K : X → X → ℂ}
[PseudoMetricSpace X]
[KernelProofData a K]
{s : ℤ}
:
Measurable fun (x : X × X) => Ks s x.1 x.2
theorem
aestronglyMeasurable_Ks
{X : Type u_1}
{a : ℕ}
{K : X → X → ℂ}
[PseudoMetricSpace X]
[KernelProofData a K]
{s : ℤ}
:
MeasureTheory.AEStronglyMeasurable (fun (x : X × X) => Ks s x.1 x.2) MeasureTheory.volume
theorem
integrable_Ks_x
{X : Type u_1}
{a : ℕ}
{K : X → X → ℂ}
[PseudoMetricSpace X]
[KernelProofData a K]
{s : ℤ}
{x : X}
(hD : 1 < ↑(defaultD a))
:
The function y ↦ Ks s x y is integrable.