The function ψ
Equations
- ShortVariables.termψ = Lean.ParserDescr.node `ShortVariables.termψ 1024 (Lean.ParserDescr.symbol "ψ")
Instances For
theorem
DoublingMeasure.volume_ball_two_le_same_repeat
{X : Type u_1}
{a : ℕ}
{q : ℝ}
{K : X → X → ℂ}
{σ₁ σ₂ : X → ℤ}
{F G : Set X}
[PseudoMetricSpace X]
[ProofData a q K σ₁ σ₂ F G]
(x : X)
(r : ℝ)
(n : ℕ)
:
MeasureTheory.volume.real (Metric.ball x (2 ^ n * r)) ≤ ↑(defaultA a) ^ n * MeasureTheory.volume.real (Metric.ball x r)
Apply volume_ball_two_le_same
n
times.
theorem
Metric.measure_ball_pos_nnreal
{X : Type u_1}
{a : ℕ}
{q : ℝ}
{K : X → X → ℂ}
{σ₁ σ₂ : X → ℤ}
{F G : Set X}
[PseudoMetricSpace X]
[ProofData a q K σ₁ σ₂ F G]
(x : X)
(r : ℝ)
(hr : r > 0)
:
MeasureTheory.volume.nnreal (ball x r) > 0
theorem
Metric.measure_ball_pos_real
{X : Type u_1}
{a : ℕ}
{q : ℝ}
{K : X → X → ℂ}
{σ₁ σ₂ : X → ℤ}
{F G : Set X}
[PseudoMetricSpace X]
[ProofData a q K σ₁ σ₂ F G]
(x : X)
(r : ℝ)
(hr : r > 0)
:
MeasureTheory.volume.real (ball x r) > 0
theorem
norm_Ks_le_of_dist_le
{X : Type u_1}
{a : ℕ}
{q : ℝ}
{K : X → X → ℂ}
{σ₁ σ₂ : X → ℤ}
{F G : Set X}
[PseudoMetricSpace X]
[ProofData a q K σ₁ σ₂ F G]
{x y x₀ : X}
{r₀ : ℝ}
(hr₀ : 0 < r₀)
(hx : dist x x₀ ≤ r₀)
(s : ℤ)
:
‖Ks s x y‖ ≤ ↑(C2_1_3 ↑a) * ↑(MeasureTheory.As (↑(defaultA a)) (2 * r₀ / ↑(defaultD a) ^ s)) / MeasureTheory.volume.real (Metric.ball x₀ r₀)
Ks
is bounded uniformly in x
, y
assuming x
is in a fixed closed ball.
theorem
norm_Ks_sub_Ks_le
{X : Type u_1}
{a : ℕ}
{q : ℝ}
{K : X → X → ℂ}
{σ₁ σ₂ : X → ℤ}
{F G : Set X}
[PseudoMetricSpace X]
[ProofData a q K σ₁ σ₂ F G]
(s : ℤ)
(x y y' : X)
:
theorem
nnnorm_Ks_sub_Ks_le
{X : Type u_1}
{a : ℕ}
{q : ℝ}
{K : X → X → ℂ}
{σ₁ σ₂ : X → ℤ}
{F G : Set X}
[PseudoMetricSpace X]
[ProofData a q K σ₁ σ₂ F G]
{s : ℤ}
{x y y' : X}
:
theorem
stronglyMeasurable_Ks
{X : Type u_1}
{a : ℕ}
{q : ℝ}
{K : X → X → ℂ}
{σ₁ σ₂ : X → ℤ}
{F G : Set X}
[PseudoMetricSpace X]
[ProofData a q K σ₁ σ₂ F G]
{s : ℤ}
:
MeasureTheory.StronglyMeasurable fun (x : X × X) => Ks s x.1 x.2
theorem
measurable_Ks
{X : Type u_1}
{a : ℕ}
{q : ℝ}
{K : X → X → ℂ}
{σ₁ σ₂ : X → ℤ}
{F G : Set X}
[PseudoMetricSpace X]
[ProofData a q K σ₁ σ₂ F G]
{s : ℤ}
:
Measurable fun (x : X × X) => Ks s x.1 x.2
theorem
aestronglyMeasurable_Ks
{X : Type u_1}
{a : ℕ}
{q : ℝ}
{K : X → X → ℂ}
{σ₁ σ₂ : X → ℤ}
{F G : Set X}
[PseudoMetricSpace X]
[ProofData a q K σ₁ σ₂ F G]
{s : ℤ}
:
MeasureTheory.AEStronglyMeasurable (fun (x : X × X) => Ks s x.1 x.2) MeasureTheory.volume