Documentation

Carleson.Psi

The function ψ

def ψ (D : ) (x : ) :
Equations
Instances For
    theorem zero_le_ψ (D : ) (x : ) :
    0 ψ D x
    theorem ψ_le_one (D : ) (x : ) :
    ψ D x 1
    theorem abs_ψ_le_one (D : ) (x : ) :
    |ψ D x| 1
    theorem ψ_formula₀ {D : } {x : } (hx : x 1 / (4 * D)) :
    ψ D x = 0
    theorem ψ_formula₁ {D : } (hD : 1 < D) {x : } (hx : 1 / (4 * D) x x 1 / (2 * D)) :
    ψ D x = 4 * D * x - 1
    theorem ψ_formula₂ {D : } (hD : 1 < D) {x : } (hx : 1 / (2 * D) x x 1 / 4) :
    ψ D x = 1
    theorem ψ_formula₃ {D : } (hD : 1 < D) {x : } (hx : 1 / 4 x x 1 / 2) :
    ψ D x = 2 - 4 * x
    theorem ψ_formula₄ {D : } {x : } (hx : x 1 / 2) :
    ψ D x = 0
    theorem psi_zero {D : } :
    ψ D 0 = 0
    theorem support_ψ {D : } (hD : 1 < D) :
    theorem lipschitzWith_ψ {D : } (hD : 1 D) :
    LipschitzWith (4 * D) (ψ D)
    theorem lipschitzWith_ψ' {D : } (hD : 1 D) (a b : ) :
    ψ D a - ψ D b 4 * D * dist a b
    def nonzeroS (D : ) (x : ) :
    Equations
    Instances For
      theorem sum_ψ {D : } {x : } (hD : 1 < D) (hx : 0 < x) :
      snonzeroS D x, ψ D (D ^ (-s) * x) = 1
      theorem mem_nonzeroS_iff {D : } (hD : 1 < D) {i : } {x : } (hx : 0 < x) :
      i nonzeroS D x D ^ (-i) * x Set.Ioo (4 * D)⁻¹ 2⁻¹
      theorem psi_ne_zero_iff {D : } {s : } (hD : 1 < D) {x : } (hx : 0 < x) :
      ψ D (D ^ (-s) * x) 0 s nonzeroS D x
      theorem psi_eq_zero_iff {D : } {s : } (hD : 1 < D) {x : } (hx : 0 < x) :
      ψ D (D ^ (-s) * x) = 0 snonzeroS D x
      theorem support_ψS {D : } {x : } (hD : 1 < D) (hx : 0 < x) :
      (Function.support fun (s : ) => ψ D (D ^ (-s) * x)) = (nonzeroS D x)
      theorem finsum_ψ {D : } {x : } (hD : 1 < D) (hx : 0 < x) :
      ∑ᶠ (s : ), ψ D (D ^ (-s) * x) = 1
      def Ks {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [PseudoMetricSpace X] [ProofData a q K σ₁ σ₂ F G] (s : ) (x y : X) :

      K_s in the blueprint

      Equations
      Instances For
        theorem Ks_def {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [PseudoMetricSpace X] [ProofData a q K σ₁ σ₂ F G] (s : ) (x y : X) :
        Ks s x y = K x y * (ψ (defaultD a) ((defaultD a) ^ (-s) * dist x y))
        theorem sum_Ks {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [PseudoMetricSpace X] [ProofData a q K σ₁ σ₂ F G] {x y : X} {t : Finset } (hs : nonzeroS (defaultD a) (dist x y) t) (hD : 1 < (defaultD a)) (h : 0 < dist x y) :
        it, Ks i x y = K x y
        theorem dist_mem_Icc_of_Ks_ne_zero {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [PseudoMetricSpace X] [ProofData a q K σ₁ σ₂ F G] {s : } {x y : X} (h : Ks s x y 0) :
        dist x y Set.Icc ((defaultD a) ^ (s - 1) / 4) ((defaultD a) ^ s / 2)
        def C2_1_3 (a : NNReal) :

        The constant appearing in part 2 of Lemma 2.1.3.

        Equations
        Instances For
          def D2_1_3 (a : NNReal) :

          The constant appearing in part 3 of Lemma 2.1.3.

          Equations
          Instances For
            theorem kernel_bound {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [PseudoMetricSpace X] [ProofData a q K σ₁ σ₂ F G] {s : } {x y : X} :
            Ks s x y‖₊ 2 ^ a ^ 3 / MeasureTheory.volume.nnreal (Metric.ball x (dist x y))
            theorem DoublingMeasure.volume_ball_two_le_same_repeat {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [PseudoMetricSpace X] [ProofData a q K σ₁ σ₂ F G] (x : X) (r : ) (n : ) :
            MeasureTheory.volume.real (Metric.ball x (2 ^ n * r)) (defaultA a) ^ n * MeasureTheory.volume.real (Metric.ball x r)

            Apply volume_ball_two_le_same n times.

            theorem Metric.measure_ball_pos_nnreal {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [PseudoMetricSpace X] [ProofData a q K σ₁ σ₂ F G] (x : X) (r : ) (hr : r > 0) :
            MeasureTheory.volume.nnreal (Metric.ball x r) > 0
            theorem Metric.measure_ball_pos_real {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [PseudoMetricSpace X] [ProofData a q K σ₁ σ₂ F G] (x : X) (r : ) (hr : r > 0) :
            MeasureTheory.volume.real (Metric.ball x r) > 0
            theorem K_eq_K_of_dist_eq_zero {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [PseudoMetricSpace X] [ProofData a q K σ₁ σ₂ F G] {x y y' : X} (hyy' : dist y y' = 0) :
            K x y = K x y'
            theorem K_eq_zero_of_dist_eq_zero {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [PseudoMetricSpace X] [ProofData a q K σ₁ σ₂ F G] {x y : X} (hxy : dist x y = 0) :
            K x y = 0
            theorem norm_Ks_le {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [PseudoMetricSpace X] [ProofData a q K σ₁ σ₂ F G] {s : } {x y : X} :
            Ks s x y (C2_1_3 a) / MeasureTheory.volume.real (Metric.ball x ((defaultD a) ^ s))
            theorem nnnorm_Ks_le {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [PseudoMetricSpace X] [ProofData a q K σ₁ σ₂ F G] {s : } {x y : X} :
            Ks s x y‖₊ (C2_1_3 a) / MeasureTheory.volume (Metric.ball x ((defaultD a) ^ s))
            theorem norm_Ks_le_of_dist_le {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [PseudoMetricSpace X] [ProofData a q K σ₁ σ₂ F G] {x y x₀ : X} {r₀ : } (hr₀ : 0 < r₀) (hx : dist x x₀ r₀) (s : ) :
            Ks s x y (C2_1_3 a) * (MeasureTheory.As (↑(defaultA a)) (2 * r₀ / (defaultD a) ^ s)) / MeasureTheory.volume.real (Metric.ball x₀ r₀)

            Ks is bounded uniformly in x, y assuming x is in a fixed closed ball.

            theorem Bornology.IsBounded.exists_bound_of_norm_Ks {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [PseudoMetricSpace X] [ProofData a q K σ₁ σ₂ F G] {A : Set X} (hA : Bornology.IsBounded A) (s : ) :
            ∃ (C : ), 0 C ∀ (x y : X), x AKs s x y C

            ‖Ks x y‖ is bounded if x is in a bounded set

            theorem norm_Ks_sub_Ks_le_of_nonzero {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [PseudoMetricSpace X] [ProofData a q K σ₁ σ₂ F G] {s : } {x y y' : X} (hK : Ks s x y 0) :
            Ks s x y - Ks s x y' (D2_1_3 a) / MeasureTheory.volume.real (Metric.ball x ((defaultD a) ^ s)) * (dist y y' / (defaultD a) ^ s) ^ (↑a)⁻¹
            theorem norm_Ks_sub_Ks_le {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [PseudoMetricSpace X] [ProofData a q K σ₁ σ₂ F G] (s : ) (x y y' : X) :
            Ks s x y - Ks s x y' (D2_1_3 a) / MeasureTheory.volume.real (Metric.ball x ((defaultD a) ^ s)) * (dist y y' / (defaultD a) ^ s) ^ (↑a)⁻¹
            theorem nnnorm_Ks_sub_Ks_le {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [PseudoMetricSpace X] [ProofData a q K σ₁ σ₂ F G] {s : } {x y y' : X} :
            Ks s x y - Ks s x y'‖₊ (D2_1_3 a) / MeasureTheory.volume (Metric.ball x ((defaultD a) ^ s)) * ((nndist y y') / (defaultD a) ^ s) ^ (↑a)⁻¹
            theorem aestronglyMeasurable_Ks {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [PseudoMetricSpace X] [ProofData a q K σ₁ σ₂ F G] {s : } :
            MeasureTheory.AEStronglyMeasurable (fun (x : X × X) => Ks s x.1 x.2) MeasureTheory.volume
            theorem integrable_Ks_x {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [PseudoMetricSpace X] [ProofData a q K σ₁ σ₂ F G] {s : } {x : X} (hD : 1 < (defaultD a)) :
            MeasureTheory.Integrable (Ks s x) MeasureTheory.volume

            The function y ↦ Ks s x y is integrable.