Equations
- ShortVariables.termNnq' = Lean.ParserDescr.node `ShortVariables.termNnq' 1024 (Lean.ParserDescr.symbol "nnq'")
Instances For
theorem
E_disjoint
{X : Type u_1}
{a : ℕ}
{q : ℝ}
{K : X → X → ℂ}
{σ₁ σ₂ : X → ℤ}
{F G : Set X}
[MetricSpace X]
[ProofData a q K σ₁ σ₂ F G]
[TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)]
{𝔄 : Finset (𝔓 X)}
(h𝔄 : IsAntichain (fun (x1 x2 : 𝔓 X) => x1 ≤ x2) ↑𝔄)
{p p' : 𝔓 X}
(hp : p ∈ 𝔄)
(hp' : p' ∈ 𝔄)
(hE : (E p ∩ E p').Nonempty)
:
p = p'
theorem
MaximalBoundAntichain
{X : Type u_1}
{a : ℕ}
{q : ℝ}
{K : X → X → ℂ}
{σ₁ σ₂ : X → ℤ}
{F G : Set X}
[MetricSpace X]
[ProofData a q K σ₁ σ₂ F G]
[TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)]
{𝔄 : Finset (𝔓 X)}
(h𝔄 : IsAntichain (fun (x1 x2 : 𝔓 X) => x1 ≤ x2) ↑𝔄)
{f : X → ℂ}
(hfm : Measurable f)
(x : X)
:
theorem
eLpNorm_maximal_function_le'
{X : Type u_1}
{a : ℕ}
{q : ℝ}
{K : X → X → ℂ}
{σ₁ σ₂ : X → ℤ}
{F G : Set X}
[MetricSpace X]
[ProofData a q K σ₁ σ₂ F G]
[TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)]
{𝔄 : Finset (𝔓 X)}
(h𝔄 : IsAntichain (fun (x1 x2 : 𝔓 X) => x1 ≤ x2) ↑𝔄)
{f : X → ℂ}
(hf : ∀ (x : X), ‖f x‖ ≤ F.indicator 1 x)
(hfm : Measurable f)
:
MeasureTheory.eLpNorm
(fun (x : X) =>
(maximalFunction MeasureTheory.volume (↑𝔄) 𝔠 (fun (𝔭 : 𝔓 X) => 8 * ↑(defaultD a) ^ 𝔰 𝔭)
(2 * (2 * ↑(nnq X) / (↑(nnq X) + 1)) / (3 * (2 * ↑(nnq X) / (↑(nnq X) + 1)) - 2)) f x).toReal)
2 MeasureTheory.volume ≤ 2 ^ (2 * a) * (3 * (2 * ↑(nnq X) / (↑(nnq X) + 1)) - 2) / (2 * (2 * ↑(nnq X) / (↑(nnq X) + 1)) - 2) * MeasureTheory.eLpNorm f 2 MeasureTheory.volume
theorem
Dens2Antichain
{X : Type u_1}
{a : ℕ}
{q : ℝ}
{K : X → X → ℂ}
{σ₁ σ₂ : X → ℤ}
{F G : Set X}
[MetricSpace X]
[ProofData a q K σ₁ σ₂ F G]
[TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)]
{𝔄 : Finset (𝔓 X)}
(h𝔄 : IsAntichain (fun (x1 x2 : 𝔓 X) => x1 ≤ x2) ↑𝔄)
(ha : 4 ≤ a)
{f : X → ℂ}
(hf : ∀ (x : X), ‖f x‖ ≤ F.indicator 1 x)
(hfm : Measurable f)
{g : X → ℂ}
(hg : ∀ (x : X), ‖g x‖ ≤ G.indicator 1 x)
(x : X)
:
theorem
antichain_operator
{X : Type u_1}
{a : ℕ}
{q : ℝ}
{K : X → X → ℂ}
{σ₁ σ₂ : X → ℤ}
{F G : Set X}
[MetricSpace X]
[ProofData a q K σ₁ σ₂ F G]
[TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)]
{𝔄 : Set (𝔓 X)}
{f g : X → ℂ}
(hf : Measurable f)
(hf1 : ∀ (x : X), ‖f x‖ ≤ F.indicator 1 x)
(hg : Measurable g)
(hg1 : ∀ (x : X), ‖g x‖ ≤ G.indicator 1 x)
(h𝔄 : IsAntichain (fun (x1 x2 : TileLike X) => x1 ≤ x2) (toTileLike '' 𝔄))
:
Proposition 2.0.3