6. Proof of the Antichain Operator Proposition #
This file contains the proofs of Lemma 6.1.4 and Proposition 2.0.3 from the blueprint. Three versions of the latter are provided.
Main results #
dens1_antichain: Lemma 6.1.4.antichain_operator: Proposition 2.0.3.
theorem
dens1_antichain_rearrange
{X : Type u_1}
{a : ℕ}
{q : ℝ}
{K : X → X → ℂ}
{σ₁ σ₂ : X → ℤ}
{F G : Set X}
[MetricSpace X]
[ProofData a q K σ₁ σ₂ F G]
[TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)]
{𝔄 : Set (𝔓 X)}
{g : X → ℂ}
(bg : MeasureTheory.BoundedCompactSupport g MeasureTheory.volume)
:
MeasureTheory.eLpNorm (adjointCarlesonSum 𝔄 g) 2 MeasureTheory.volume ^ 2 ≤ 2 * ∑ p : 𝔓 X with p ∈ 𝔄,
∑ p' : 𝔓 X with p' ∈ 𝔄 ∧ 𝔰 p' ≤ 𝔰 p,
‖∫ (x : X), adjointCarleson p' g x * (starRingEnd ℂ) (adjointCarleson p g x)‖ₑ
def
dach
{X : Type u_1}
{a : ℕ}
{q : ℝ}
{K : X → X → ℂ}
{σ₁ σ₂ : X → ℤ}
{F G : Set X}
[MetricSpace X]
[ProofData a q K σ₁ σ₂ F G]
[TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)]
(𝔄 : Set (𝔓 X))
(p : 𝔓 X)
(g : X → ℂ)
:
h(p) in the proof of Lemma 6.1.4 (dens₁ antichain h).
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
dens1_antichain_dach
{X : Type u_1}
{a : ℕ}
{q : ℝ}
{K : X → X → ℂ}
{σ₁ σ₂ : X → ℤ}
{F G : Set X}
[MetricSpace X]
[ProofData a q K σ₁ σ₂ F G]
[TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)]
{𝔄 : Set (𝔓 X)}
{g : X → ℂ}
(hg : Measurable g)
(hgG : ∀ (x : X), ‖g x‖ ≤ G.indicator 1 x)
:
def
M14
{X : Type u_1}
{a : ℕ}
{q : ℝ}
{K : X → X → ℂ}
{σ₁ σ₂ : X → ℤ}
{F G : Set X}
[MetricSpace X]
[ProofData a q K σ₁ σ₂ F G]
[TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)]
(𝔄 : Set (𝔓 X))
(p : ℝ)
(g : X → ℂ)
:
X → ENNReal
The maximalFunction instance that appears in Lemma 6.1.4's proof.
Equations
- M14 𝔄 p g = maximalFunction MeasureTheory.volume 𝔄 𝔠 (fun (x : 𝔓 X) => 14 * ↑(defaultD a) ^ 𝔰 x) p g
Instances For
theorem
eLpNorm_le_M14
{X : Type u_1}
{a : ℕ}
{q : ℝ}
{K : X → X → ℂ}
{σ₁ σ₂ : X → ℤ}
{F G : Set X}
[MetricSpace X]
[ProofData a q K σ₁ σ₂ F G]
[TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)]
{𝔄 : Set (𝔓 X)}
{g : X → ℂ}
{p : 𝔓 X}
(mp : p ∈ 𝔄)
{x₀ : X}
(hx : x₀ ∈ Metric.ball (𝔠 p) (14 * ↑(defaultD a) ^ 𝔰 p))
{r : ℝ}
(hr : 0 < r)
:
MeasureTheory.eLpNorm ((Metric.ball (𝔠 p) (14 * ↑(defaultD a) ^ 𝔰 p)).indicator fun (x : X) => ‖g x‖ₑ)
(ENNReal.ofReal r) MeasureTheory.volume ≤ MeasureTheory.volume (Metric.ball (𝔠 p) (14 * ↑(defaultD a) ^ 𝔰 p)) ^ r⁻¹ * M14 𝔄 r g x₀
theorem
dach_bound
{X : Type u_1}
{a : ℕ}
{q : ℝ}
{K : X → X → ℂ}
{σ₁ σ₂ : X → ℤ}
{F G : Set X}
[MetricSpace X]
[ProofData a q K σ₁ σ₂ F G]
[TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)]
{𝔄 : Set (𝔓 X)}
{g : X → ℂ}
(h𝔄 : IsAntichain (fun (x1 x2 : 𝔓 X) => x1 ≤ x2) 𝔄)
{p : 𝔓 X}
(mp : p ∈ 𝔄)
(hg : Measurable g)
(hgG : ∀ (x : X), ‖g x‖ ≤ G.indicator 1 x)
{x₀ : X}
(hx : x₀ ∈ Metric.ball (𝔠 p) (14 * ↑(defaultD a) ^ 𝔰 p))
:
Equations (6.1.34) to (6.1.37) in Lemma 6.1.4.
theorem
M14_bound
{X : Type u_1}
{a : ℕ}
{q : ℝ}
{K : X → X → ℂ}
{σ₁ σ₂ : X → ℤ}
{F G : Set X}
[MetricSpace X]
[ProofData a q K σ₁ σ₂ F G]
[TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)]
{𝔄 : Set (𝔓 X)}
{g : X → ℂ}
(hg : MeasureTheory.MemLp g 2 MeasureTheory.volume)
:
MeasureTheory.eLpNorm (M14 𝔄 (Antichain.q₆ a) g) 2 MeasureTheory.volume ≤ 2 ^ (a + 2) * MeasureTheory.eLpNorm g 2 MeasureTheory.volume
theorem
dens1_antichain_sq
{X : Type u_1}
{a : ℕ}
{q : ℝ}
{K : X → X → ℂ}
{σ₁ σ₂ : X → ℤ}
{F G : Set X}
[MetricSpace X]
[ProofData a q K σ₁ σ₂ F G]
[TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)]
{𝔄 : Set (𝔓 X)}
{g : X → ℂ}
(h𝔄 : IsAntichain (fun (x1 x2 : 𝔓 X) => x1 ≤ x2) 𝔄)
(hg : Measurable g)
(hgG : ∀ (x : X), ‖g x‖ ≤ G.indicator 1 x)
:
MeasureTheory.eLpNorm (adjointCarlesonSum 𝔄 g) 2 MeasureTheory.volume ^ 2 ≤ (↑(C6_1_4 a) * dens₁ 𝔄 ^ (8 * ↑a ^ 4)⁻¹ * MeasureTheory.eLpNorm g 2 MeasureTheory.volume) ^ 2
theorem
dens1_antichain
{X : Type u_1}
{a : ℕ}
{q : ℝ}
{K : X → X → ℂ}
{σ₁ σ₂ : X → ℤ}
{F G : Set X}
[MetricSpace X]
[ProofData a q K σ₁ σ₂ F G]
[TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)]
{𝔄 : Set (𝔓 X)}
{f g : X → ℂ}
(h𝔄 : IsAntichain (fun (x1 x2 : 𝔓 X) => x1 ≤ x2) 𝔄)
(hf : Measurable f)
(hfF : ∀ (x : X), ‖f x‖ ≤ F.indicator 1 x)
(hg : Measurable g)
(hgG : ∀ (x : X), ‖g x‖ ≤ G.indicator 1 x)
:
‖∫ (x : X), (starRingEnd ℂ) (g x) * carlesonSum 𝔄 f x‖ₑ ≤ ↑(C6_1_4 a) * dens₁ 𝔄 ^ (8 * ↑a ^ 4)⁻¹ * MeasureTheory.eLpNorm f 2 MeasureTheory.volume * MeasureTheory.eLpNorm g 2 MeasureTheory.volume
Lemma 6.1.4.
theorem
antichain_operator
{X : Type u_1}
{a : ℕ}
{q : ℝ}
{K : X → X → ℂ}
{σ₁ σ₂ : X → ℤ}
{F G : Set X}
[MetricSpace X]
[ProofData a q K σ₁ σ₂ F G]
[TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)]
{𝔄 : Set (𝔓 X)}
{f g : X → ℂ}
(h𝔄 : IsAntichain (fun (x1 x2 : 𝔓 X) => x1 ≤ x2) 𝔄)
(hf : Measurable f)
(hf1 : ∀ (x : X), ‖f x‖ ≤ F.indicator 1 x)
(hg : Measurable g)
(hg1 : ∀ (x : X), ‖g x‖ ≤ G.indicator 1 x)
:
‖∫ (x : X), (starRingEnd ℂ) (g x) * carlesonSum 𝔄 f x‖ₑ ≤ ↑(C2_0_3 a (nnq X)) * dens₁ 𝔄 ^ ((q - 1) / (8 * ↑a ^ 4)) * dens₂ 𝔄 ^ (q⁻¹ - 2⁻¹) * MeasureTheory.eLpNorm f 2 MeasureTheory.volume * MeasureTheory.eLpNorm g 2 MeasureTheory.volume
Proposition 2.0.3.
theorem
antichain_operator'
{X : Type u_1}
{a : ℕ}
{q : ℝ}
{K : X → X → ℂ}
{σ₁ σ₂ : X → ℤ}
{F G : Set X}
[MetricSpace X]
[ProofData a q K σ₁ σ₂ F G]
[TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)]
{𝔄 : Set (𝔓 X)}
{f : X → ℂ}
{A : Set X}
(h𝔄 : IsAntichain (fun (x1 x2 : 𝔓 X) => x1 ≤ x2) 𝔄)
(hf : Measurable f)
(hfF : ∀ (x : X), ‖f x‖ ≤ F.indicator 1 x)
(hA : A ⊆ G)
:
Version of the antichain operator theorem, but controlling the integral of the norm instead of the integral of the function multiplied by another function.
theorem
antichain_operator_le_volume
{X : Type u_1}
{a : ℕ}
{q : ℝ}
{K : X → X → ℂ}
{σ₁ σ₂ : X → ℤ}
{F G : Set X}
[MetricSpace X]
[ProofData a q K σ₁ σ₂ F G]
[TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)]
{𝔄 : Set (𝔓 X)}
{f : X → ℂ}
{A : Set X}
(h𝔄 : IsAntichain (fun (x1 x2 : 𝔓 X) => x1 ≤ x2) 𝔄)
(hf : Measurable f)
(hfF : ∀ (x : X), ‖f x‖ ≤ F.indicator 1 x)
(hA : A ⊆ G)
:
Version of the antichain operator theorem, but controlling the integral of the norm instead of
the integral of the function multiplied by another function, and with the upper bound in terms
of volume F and volume G.