Documentation

Carleson.Antichain.AntichainOperator

theorem nnq'_coe {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] :
2 * (nnq X) / ((nnq X) + 1) = 2 * (nnq X) / ((nnq X) + 1)
theorem one_lt_nnq' {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] :
1 < 2 * nnq X / (nnq X + 1)
theorem one_lt_nnq'_coe {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] :
1 < 2 * (nnq X) / ((nnq X) + 1)
theorem nnq'_lt_nnq {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] :
2 * nnq X / (nnq X + 1) < nnq X
theorem nnq'_lt_nnq_coe {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] :
2 * (nnq X) / ((nnq X) + 1) < (nnq X)
theorem nnq'_lt_two {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] :
2 * nnq X / (nnq X + 1) < 2
theorem nnq'_lt_two_coe {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] :
2 * (nnq X) / ((nnq X) + 1) < 2
theorem E_disjoint {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {𝔄 : Finset (𝔓 X)} (h𝔄 : IsAntichain (fun (x1 x2 : 𝔓 X) => x1 x2) 𝔄) {p p' : 𝔓 X} (hp : p 𝔄) (hp' : p' 𝔄) (hE : (E p E p').Nonempty) :
p = p'
noncomputable def C_6_1_2 (a : ) :

Constant appearing in Lemma 6.1.2.

Equations
Instances For
    theorem C_6_1_2_ne_zero (a : ) :
    (C_6_1_2 a) 0
    theorem ENNReal.div_mul (a : ENNReal) {b c : ENNReal} (hb0 : b 0) (hb_top : b ) (hc0 : c 0) (hc_top : c ) :
    a / b * c = a / (b / c)
    theorem norm_Ks_le' {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {x y : X} {𝔄 : Set (𝔓 X)} (p : 𝔄) (hxE : x E p) (hy : Ks (𝔰 p) x y 0) :
    Ks (𝔰 p) x y‖₊ 2 ^ (6 * a + 101 * a ^ 3) / MeasureTheory.volume.nnreal (Metric.ball (𝔠 p) (8 * (defaultD a) ^ 𝔰 p))
    theorem MaximalBoundAntichain {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {𝔄 : Finset (𝔓 X)} (h𝔄 : IsAntichain (fun (x1 x2 : 𝔓 X) => x1 x2) 𝔄) {f : X} (hfm : Measurable f) (x : X) :
    p𝔄, carlesonOn p f x‖₊ (C_6_1_2 a) * MB MeasureTheory.volume (↑𝔄) 𝔠 (fun (𝔭 : 𝔓 X) => 8 * (defaultD a) ^ 𝔰 𝔭) f x
    theorem Set.eq_indicator_one_mul {X : Type u_1} {F : Set X} {f : X} (hf : ∀ (x : X), f x F.indicator 1 x) :
    f = F.indicator 1 * f
    noncomputable def C_6_1_3 (a : ) (q : NNReal) :

    Constant appearing in Lemma 6.1.3.

    Equations
    Instances For
      theorem eLpNorm_maximal_function_le' {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {𝔄 : Finset (𝔓 X)} (h𝔄 : IsAntichain (fun (x1 x2 : 𝔓 X) => x1 x2) 𝔄) {f : X} (hf : ∀ (x : X), f x F.indicator 1 x) (hfm : Measurable f) :
      MeasureTheory.eLpNorm (fun (x : X) => (maximalFunction MeasureTheory.volume (↑𝔄) 𝔠 (fun (𝔭 : 𝔓 X) => 8 * (defaultD a) ^ 𝔰 𝔭) (2 * (2 * (nnq X) / ((nnq X) + 1)) / (3 * (2 * (nnq X) / ((nnq X) + 1)) - 2)) f x).toReal) 2 MeasureTheory.volume 2 ^ (2 * a) * (3 * (2 * (nnq X) / ((nnq X) + 1)) - 2) / (2 * (2 * (nnq X) / ((nnq X) + 1)) - 2) * MeasureTheory.eLpNorm f 2 MeasureTheory.volume
      theorem Dens2Antichain {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {𝔄 : Finset (𝔓 X)} (h𝔄 : IsAntichain (fun (x1 x2 : 𝔓 X) => x1 x2) 𝔄) (ha : 4 a) {f : X} (hf : ∀ (x : X), f x F.indicator 1 x) (hfm : Measurable f) {g : X} (hg : ∀ (x : X), g x G.indicator 1 x) (x : X) :
      ∫ (x : X), (starRingEnd ) (g x) * p𝔄, carlesonOn p f x‖₊ (C_6_1_3 (↑a) (nnq X)) * dens₂ 𝔄 ^ ((2 * (nnq X) / ((nnq X) + 1))⁻¹ - 2⁻¹) * MeasureTheory.eLpNorm f 2 MeasureTheory.volume * MeasureTheory.eLpNorm g 2 MeasureTheory.volume
      def C_2_0_3 (a q : ) :

      The constant appearing in Proposition 2.0.3. Has value 2 ^ (150 * a ^ 3) / (q - 1) in the blueprint.

      Equations
      Instances For
        theorem antichain_operator {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {𝔄 : Set (𝔓 X)} {f g : X} (hf : Measurable f) (hf1 : ∀ (x : X), f x F.indicator 1 x) (hg : Measurable g) (hg1 : ∀ (x : X), g x G.indicator 1 x) (h𝔄 : IsAntichain (fun (x1 x2 : TileLike X) => x1 x2) (toTileLike '' 𝔄)) :
        ∫ (x : X), (starRingEnd ) (g x) * ∑ᶠ (p : 𝔄), carlesonOn (↑p) f x C_2_0_3 (↑a) q * (dens₁ 𝔄).toReal ^ ((q - 1) / (8 * a ^ 4)) * (dens₂ 𝔄).toReal ^ (q⁻¹ - 2⁻¹) * (MeasureTheory.eLpNorm f 2 MeasureTheory.volume).toReal * (MeasureTheory.eLpNorm g 2 MeasureTheory.volume).toReal

        Proposition 2.0.3