Documentation

Carleson.Antichain.AntichainOperator

theorem nnq'_coe {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] :
2 * (nnq X) / ((nnq X) + 1) = 2 * (nnq X) / ((nnq X) + 1)
theorem one_lt_nnq' {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] :
1 < 2 * nnq X / (nnq X + 1)
theorem one_lt_nnq'_coe {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] :
1 < 2 * (nnq X) / ((nnq X) + 1)
theorem nnq'_lt_nnq {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] :
2 * nnq X / (nnq X + 1) < nnq X
theorem nnq'_lt_nnq_coe {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] :
2 * (nnq X) / ((nnq X) + 1) < (nnq X)
theorem nnq'_lt_two {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] :
2 * nnq X / (nnq X + 1) < 2
theorem nnq'_lt_two_coe {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] :
2 * (nnq X) / ((nnq X) + 1) < 2
theorem E_disjoint {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {𝔄 : Finset (𝔓 X)} (h𝔄 : IsAntichain (fun (x1 x2 : 𝔓 X) => x1 x2) 𝔄) {p p' : 𝔓 X} (hp : p 𝔄) (hp' : p' 𝔄) (hE : (E p E p').Nonempty) :
p = p'
noncomputable def C_6_1_2 (a : ) :

Constant appearing in Lemma 6.1.2.

Equations
Instances For
    theorem C_6_1_2_ne_zero (a : ) :
    (C_6_1_2 a) 0
    theorem ENNReal.div_mul (a : ENNReal) {b c : ENNReal} (hb0 : b 0) (hb_top : b ) (hc0 : c 0) (hc_top : c ) :
    a / b * c = a / (b / c)
    theorem norm_Ks_le' {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {x y : X} {𝔄 : Set (𝔓 X)} (p : 𝔄) (hxE : x E p) (hy : Ks (𝔰 p) x y 0) :
    Ks (𝔰 p) x y‖₊ 2 ^ (6 * a + 101 * a ^ 3) / MeasureTheory.volume.nnreal (Metric.ball (𝔠 p) (8 * (defaultD a) ^ 𝔰 p))
    theorem MaximalBoundAntichain {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {𝔄 : Finset (𝔓 X)} (h𝔄 : IsAntichain (fun (x1 x2 : 𝔓 X) => x1 x2) 𝔄) {f : X} (hfm : Measurable f) (x : X) :
    p𝔄, carlesonOn p f x‖₊ (C_6_1_2 a) * MB MeasureTheory.volume (↑𝔄) 𝔠 (fun (𝔭 : 𝔓 X) => 8 * (defaultD a) ^ 𝔰 𝔭) f x
    theorem Set.eq_indicator_one_mul {X : Type u_1} {F : Set X} {f : X} (hf : ∀ (x : X), f x F.indicator 1 x) :
    f = F.indicator 1 * f
    noncomputable def C_6_1_3 (a : ) (q : NNReal) :

    Constant appearing in Lemma 6.1.3.

    Equations
    Instances For
      theorem eLpNorm_maximal_function_le' {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {𝔄 : Finset (𝔓 X)} (h𝔄 : IsAntichain (fun (x1 x2 : 𝔓 X) => x1 x2) 𝔄) {f : X} (hf : ∀ (x : X), f x F.indicator 1 x) (hfm : Measurable f) :
      MeasureTheory.eLpNorm (fun (x : X) => (maximalFunction MeasureTheory.volume (↑𝔄) 𝔠 (fun (𝔭 : 𝔓 X) => 8 * (defaultD a) ^ 𝔰 𝔭) (2 * (2 * (nnq X) / ((nnq X) + 1)) / (3 * (2 * (nnq X) / ((nnq X) + 1)) - 2)) f x).toReal) 2 MeasureTheory.volume 2 ^ (2 * a) * (3 * (2 * (nnq X) / ((nnq X) + 1)) - 2) / (2 * (2 * (nnq X) / ((nnq X) + 1)) - 2) * MeasureTheory.eLpNorm f 2 MeasureTheory.volume
      theorem Dens2Antichain {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {𝔄 : Finset (𝔓 X)} (h𝔄 : IsAntichain (fun (x1 x2 : 𝔓 X) => x1 x2) 𝔄) (ha : 4 a) {f : X} (hf : ∀ (x : X), f x F.indicator 1 x) (hfm : Measurable f) {g : X} (hg : ∀ (x : X), g x G.indicator 1 x) (x : X) :
      ∫ (x : X), (starRingEnd ) (g x) * p𝔄, carlesonOn p f x‖₊ (C_6_1_3 (↑a) (nnq X)) * dens₂ 𝔄 ^ ((2 * (nnq X) / ((nnq X) + 1))⁻¹ - 2⁻¹) * MeasureTheory.eLpNorm f 2 MeasureTheory.volume * MeasureTheory.eLpNorm g 2 MeasureTheory.volume
      def C_2_0_3 (a : ) (q : NNReal) :

      The constant appearing in Proposition 2.0.3. Has value 2 ^ (150 * a ^ 3) / (q - 1) in the blueprint.

      Equations
      Instances For
        theorem antichain_operator {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {𝔄 : Set (𝔓 X)} {f g : X} (hf : Measurable f) (hf1 : ∀ (x : X), f x F.indicator 1 x) (hg : Measurable g) (hg1 : ∀ (x : X), g x G.indicator 1 x) (h𝔄 : IsAntichain (fun (x1 x2 : 𝔓 X) => x1 x2) 𝔄) :
        ∫ (x : X), (starRingEnd ) (g x) * carlesonSum 𝔄 f x‖₊ (C_2_0_3 (↑a) (nnq X)) * dens₁ 𝔄 ^ ((q - 1) / (8 * a ^ 4)) * dens₂ 𝔄 ^ (q⁻¹ - 2⁻¹) * MeasureTheory.eLpNorm f 2 MeasureTheory.volume * MeasureTheory.eLpNorm g 2 MeasureTheory.volume

        Proposition 2.0.3

        theorem antichain_operator' {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {𝔄 : Set (𝔓 X)} {f : X} {A : Set X} (hf : Measurable f) (h2f : ∀ (x : X), f x F.indicator 1 x) (hA : A G) (h𝔄 : IsAntichain (fun (x1 x2 : 𝔓 X) => x1 x2) 𝔄) :
        ∫⁻ (x : X) in A, carlesonSum 𝔄 f x‖₊ (C_2_0_3 (↑a) (nnq X)) * dens₁ 𝔄 ^ ((q - 1) / (8 * a ^ 4)) * dens₂ 𝔄 ^ (q⁻¹ - 2⁻¹) * MeasureTheory.eLpNorm f 2 MeasureTheory.volume * MeasureTheory.volume G ^ (1 / 2)

        Version of the forest operator theorem, but controlling the integral of the norm instead of the integral of the function multiplied by another function.

        theorem antichain_operator_le_volume {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {𝔄 : Set (𝔓 X)} {f : X} {A : Set X} (hf : Measurable f) (h2f : ∀ (x : X), f x F.indicator 1 x) (hA : A G) (h𝔄 : IsAntichain (fun (x1 x2 : 𝔓 X) => x1 x2) 𝔄) :
        ∫⁻ (x : X) in A, carlesonSum 𝔄 f x‖₊ (C_2_0_3 (↑a) (nnq X)) * dens₁ 𝔄 ^ ((q - 1) / (8 * a ^ 4)) * dens₂ 𝔄 ^ (q⁻¹ - 2⁻¹) * MeasureTheory.volume F ^ (1 / 2) * MeasureTheory.volume G ^ (1 / 2)

        Version of the forest operator theorem, but controlling the integral of the norm instead of the integral of the function multiplied by another function, and with the upper bound in terms of volume F and volume G.