6.3. Proof of the Antichain Tile Count Lemma #
This file contains the proofs of lemmas 6.3.1, 6.3.2, 6.3.3, 6.3.4 and 6.1.6 from the blueprint.
Main results #
Antichain.tile_reach: Lemma 6.3.1.Antichain.stack_density: Lemma 6.3.2.Antichain.local_antichain_density: Lemma 6.3.3.Antichain.global_antichain_density: Lemma 6.3.4.Antichain.tile_count: Lemma 6.1.6.
Lemma 6.3.1.
Def 6.3.15.
Equations
Instances For
Lemma 6.3.2.
We prove inclusion 6.3.24 for every p β (π_aux π Ο N) with π° p' < π° p such that
(π p : Set X) β© (π p') β β
. The variable p' corresponds to π_Ο in the blueprint.
Lemma 6.3.3.
The set π' defined in Lemma 6.3.4.
Equations
Instances For
The set π_-S defined in Lemma 6.3.4.
Equations
Instances For
The set π_{-S} defined in Lemma 6.3.4.
Equations
- Antichain.π_min π Ο N = {I : Grid X | β (p : β(Antichain.π_min π Ο N)), I = π βp}
Instances For
The set π defined in Lemma 6.3.4.
Equations
Instances For
The set π* defined in Lemma 6.3.4.
Equations
Instances For
The L' introduced in the proof of Lemma 6.3.4.
Equations
- Antichain.L' hL = β―.choose
Instances For
p'' in the blueprint
Equations
- Antichain.p'' hL = β―.choose
Instances For
p_Ξ in the blueprint
Equations
- Antichain.pΞ hL = if π (Antichain.p'' hL) = Antichain.L' hL then Antichain.p'' hL else Exists.choose β―
Instances For
Lemma 6.3.4.
p in Lemma 6.1.6. We append a subscript β to keep p available for tiles.
Equations
- Antichain.pβ a = 4 * βa ^ 4
Instances For
p' in the proof of Lemma 6.1.4, the HΓΆlder conjugate exponent of pβ.
Equations
- Antichain.qβ a = (1 - (Antichain.pβ a)β»ΒΉ)β»ΒΉ
Instances For
Lemma 6.1.6.