Documentation

Carleson.Antichain.TileCorrelation

6.2. Proof of the Tile Correlation Lemma #

This file contains the proofs of lemmas 6.2.1, 6.2.2, 6.2.3 and 6.1.5 from the blueprint.

Main definitions #

Main results #

def Tile.correlation {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] (s₁ s₂ : ) (x₁ x₂ y : X) :

Def 6.2.1 (from Lemma 6.2.1), denoted by φ(y) in the blueprint.

Equations
Instances For
    theorem Tile.measurable_correlation {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] :
    theorem Tile.mem_ball_of_correlation_ne_zero {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] {s₁ s₂ : } {x₁ x₂ y : X} (hy : correlation s₁ s₂ x₁ x₂ y 0) :
    y Metric.ball x₁ ((defaultD a) ^ s₁)

    First part of Lemma 6.2.1 (eq. 6.2.2).

    The constant from lemma 6.2.1. Has value 2 ^ (231 * a ^ 3) in the blueprint.

    Equations
    Instances For
      theorem Tile.correlation_kernel_bound {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] {s₁ s₂ : } {x₁ x₂ : X} (hs : s₁ s₂) :
      iHolENorm (correlation s₁ s₂ x₁ x₂) x₁ (2 * (defaultD a) ^ s₁) (defaultτ a) (C6_2_1 a) / (MeasureTheory.volume (Metric.ball x₁ ((defaultD a) ^ s₁)) * MeasureTheory.volume (Metric.ball x₂ ((defaultD a) ^ s₂)))

      Second part of Lemma 6.2.1 (eq. 6.2.3).

      theorem Tile.range_support {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {p : 𝔓 X} {g : X} {y : X} (hpy : adjointCarleson p g y 0) :
      y Metric.ball (𝔠 p) (5 * (defaultD a) ^ 𝔰 p)

      Lemma 6.2.2.

      The constant from lemma 6.2.3.

      Equations
      Instances For
        theorem Tile.uncertainty' {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] (ha : 1 a) {p₁ p₂ : 𝔓 X} (hle : 𝔰 p₁ 𝔰 p₂) (hinter : (Metric.ball (𝔠 p₁) (5 * (defaultD a) ^ 𝔰 p₁) Metric.ball (𝔠 p₂) (5 * (defaultD a) ^ 𝔰 p₂)).Nonempty) {x₁ x₂ : X} (hx₁ : x₁ E p₁) (hx₂ : x₂ E p₂) :
        1 + dist_{𝔠 p₁, (defaultD a) ^ 𝔰 p₁ / 4} (𝒬 p₁) (𝒬 p₂) (C6_2_3 a) * (1 + dist_{x₁, (defaultD a) ^ 𝔰 p₁} (Q x₁) (Q x₂))

        Lemma 6.2.3 (dist version).

        theorem Tile.uncertainty {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] (ha : 1 a) {p₁ p₂ : 𝔓 X} (hle : 𝔰 p₁ 𝔰 p₂) (hinter : (Metric.ball (𝔠 p₁) (5 * (defaultD a) ^ 𝔰 p₁) Metric.ball (𝔠 p₂) (5 * (defaultD a) ^ 𝔰 p₂)).Nonempty) {x₁ x₂ : X} (hx₁ : x₁ E p₁) (hx₂ : x₂ E p₂) :
        1 + edist_{𝔠 p₁, (defaultD a) ^ 𝔰 p₁ / 4} (𝒬 p₁) (𝒬 p₂) (C6_2_3 a) * (1 + edist_{x₁, (defaultD a) ^ 𝔰 p₁} (Q x₁) (Q x₂))

        Lemma 6.2.3 (edist version).

        The constant from lemma 6.1.5. Has value 2 ^ (232 * a ^ 3) in the blueprint.

        Equations
        Instances For
          theorem Tile.C6_1_5_bound {a : } (ha : 4 a) :
          2 ^ ((2 * 𝕔 + 6 + 𝕔 / 4) * a ^ 3 + 1) * 2 ^ (11 * a) C6_1_5 a
          theorem Tile.complex_exp_lintegral {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {p : 𝔓 X} {g : X} (y : X) :
          (starRingEnd ) ( (y1 : X) in E p, (starRingEnd ) (Ks (𝔰 p) y1 y) * Complex.exp (Complex.I * (((Q y1) y1) - ((Q y1) y))) * g y1) = (y1 : X) in E p, Ks (𝔰 p) y1 y * Complex.exp (Complex.I * (-((Q y1) y1) + ((Q y1) y))) * (starRingEnd ) (g y1)
          def Tile.I12 {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] (p p' : 𝔓 X) (g : X) (x1 x2 : X) :

          Definition (6.2.27).

          Equations
          Instances For
            theorem Tile.I12_le' {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {p p' : 𝔓 X} (hle : 𝔰 p' 𝔰 p) {g : X} (x1 : (E p')) (x2 : (E p)) :
            I12 p p' g x1 x2 2 ^ ((2 * 𝕔 + 6 + 𝕔 / 4) * a ^ 3 + 8 * a) * (1 + edist_{x1, (defaultD a) ^ 𝔰 p'} (Q x1) (Q x2)) ^ (-(2 * a ^ 2 + a ^ 3)⁻¹) / MeasureTheory.volume (Metric.ball (↑x2) ((defaultD a) ^ 𝔰 p)) * g x1‖ₑ * g x2‖ₑ

            Inequality (6.2.28).

            theorem Tile.I12_le {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] (ha : 4 a) {p p' : 𝔓 X} (hle : 𝔰 p' 𝔰 p) {g : X} (hinter : (Metric.ball (𝔠 p') (5 * (defaultD a) ^ 𝔰 p') Metric.ball (𝔠 p) (5 * (defaultD a) ^ 𝔰 p)).Nonempty) (x1 : (E p')) (x2 : (E p)) :
            I12 p p' g x1 x2 2 ^ ((2 * 𝕔 + 6 + 𝕔 / 4) * a ^ 3 + 8 * a + 1) * (1 + edist_{𝔠 p', (defaultD a) ^ 𝔰 p' / 4} (𝒬 p') (𝒬 p)) ^ (-(2 * a ^ 2 + a ^ 3)⁻¹) / MeasureTheory.volume (Metric.ball (↑x2) ((defaultD a) ^ 𝔰 p)) * g x1‖ₑ * g x2‖ₑ

            Inequality (6.2.29).

            theorem Tile.volume_coeGrid_le {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {p : 𝔓 X} (x2 : (E p)) :

            Inequality (6.2.32).

            theorem Tile.bound_6_2_29 {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] (ha : 4 a) {p p' : 𝔓 X} (x2 : (E p)) :
            2 ^ ((2 * 𝕔 + 6 + 𝕔 / 4) * a ^ 3 + 8 * a + 1) * (1 + edist_{𝔠 p', (defaultD a) ^ 𝔰 p' / 4} (𝒬 p') (𝒬 p)) ^ (-(2 * a ^ 2 + a ^ 3)⁻¹) / MeasureTheory.volume (Metric.ball (↑x2) ((defaultD a) ^ 𝔰 p)) (C6_1_5 a) * (1 + edist_{𝔠 p', (defaultD a) ^ 𝔰 p' / 4} (𝒬 p') (𝒬 p)) ^ (-(2 * a ^ 2 + a ^ 3)⁻¹) / MeasureTheory.volume (𝓘 p)
            theorem Tile.enorm_eq_zero_of_notMem_closedBall {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] {g : X} (hg1 : ∀ (x : X), g x G.indicator 1 x) {x : X} (hx : xMetric.closedBall (cancelPt X) ((defaultD a) ^ defaultS X / 4)) :
            theorem Tile.eq_zero_of_notMem_closedBall {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] {g : X} (hg1 : ∀ (x : X), g x G.indicator 1 x) {x : X} (hx : xMetric.closedBall (cancelPt X) ((defaultD a) ^ defaultS X / 4)) :
            g x = 0
            theorem Tile.boundedCompactSupport_star_Ks_mul_g {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {p' : 𝔓 X} {g : X} (hg : Measurable g) (hg1 : ∀ (x : X), g x G.indicator 1 x) :
            theorem Tile.boundedCompactSupport_Ks_mul_star_g {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {p : 𝔓 X} {g : X} (hg : Measurable g) (hg1 : ∀ (x : X), g x G.indicator 1 x) :
            theorem Tile.boundedCompactSupport_aux_6_2_26 {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {p p' : 𝔓 X} {g : X} (hg : Measurable g) (hg1 : ∀ (x : X), g x G.indicator 1 x) :
            MeasureTheory.BoundedCompactSupport (fun (x : X × X × X) => match x with | (x, z1, z2) => (starRingEnd ) (Ks (𝔰 p') z1 x) * Complex.exp (Complex.I * (((Q z1) z1) - ((Q z1) x))) * g z1 * (Ks (𝔰 p) z2 x * Complex.exp (Complex.I * (-((Q z2) z2) + ((Q z2) x))) * (starRingEnd ) (g z2))) MeasureTheory.volume
            theorem Tile.bound_6_2_26_aux {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {p p' : 𝔓 X} {g : X} :
            have f := fun (x : X × X × X) => match x with | (x, z1, z2) => (starRingEnd ) (Ks (𝔰 p') z1 x) * Complex.exp (Complex.I * (((Q z1) z1) - ((Q z1) x))) * g z1 * (Ks (𝔰 p) z2 x * Complex.exp (Complex.I * (-((Q z2) z2) + ((Q z2) x))) * (starRingEnd ) (g z2)); ∫⁻ (x : X × X) in E p' ×ˢ E p, (y : X), f (y, x)‖ₑ = ∫⁻ (z : X × X) in E p' ×ˢ E p, I12 p p' g z.1 z.2
            theorem Tile.bound_6_2_26 {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {p p' : 𝔓 X} {g : X} (hg : Measurable g) (hg1 : ∀ (x : X), g x G.indicator 1 x) :
            (y : X), adjointCarleson p' g y * (starRingEnd ) (adjointCarleson p g y)‖ₑ ∫⁻ (z : X × X) in E p' ×ˢ E p, I12 p p' g z.1 z.2
            theorem Tile.correlation_le_of_nonempty_inter {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] (ha : 4 a) {p p' : 𝔓 X} (hle : 𝔰 p' 𝔰 p) {g : X} (hg : Measurable g) (hg1 : ∀ (x : X), g x G.indicator 1 x) (hinter : (Metric.ball (𝔠 p') (5 * (defaultD a) ^ 𝔰 p') Metric.ball (𝔠 p) (5 * (defaultD a) ^ 𝔰 p)).Nonempty) :
            (y : X), adjointCarleson p' g y * (starRingEnd ) (adjointCarleson p g y)‖ₑ ((C6_1_5 a) * (1 + edist_{𝔠 p', (defaultD a) ^ 𝔰 p' / 4} (𝒬 p') (𝒬 p)) ^ (-(2 * a ^ 2 + a ^ 3)⁻¹) / MeasureTheory.volume (𝓘 p) * ∫⁻ (y : X) in E p', g y‖ₑ) * ∫⁻ (y : X) in E p, g y‖ₑ
            theorem Tile.correlation_le_of_empty_inter {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {p p' : 𝔓 X} {g : X} (hinter : ¬(Metric.ball (𝔠 p') (5 * (defaultD a) ^ 𝔰 p') Metric.ball (𝔠 p) (5 * (defaultD a) ^ 𝔰 p)).Nonempty) :
            (y : X), adjointCarleson p' g y * (starRingEnd ) (adjointCarleson p g y)‖ₑ ((C6_1_5 a) * (1 + edist_{𝔠 p', (defaultD a) ^ 𝔰 p' / 4} (𝒬 p') (𝒬 p)) ^ (-(2 * a ^ 2 + a ^ 3)⁻¹) / MeasureTheory.volume (𝓘 p) * ∫⁻ (y : X) in E p', g y‖ₑ) * ∫⁻ (y : X) in E p, g y‖ₑ

            If (6.2.23) does not hold, the LHS is zero and the result follows trivially.

            theorem Tile.correlation_le {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {p p' : 𝔓 X} (hle : 𝔰 p' 𝔰 p) {g : X} (hg : Measurable g) (hg1 : ∀ (x : X), g x G.indicator 1 x) :
            (y : X), adjointCarleson p' g y * (starRingEnd ) (adjointCarleson p g y)‖ₑ ((C6_1_5 a) * (1 + edist_{𝔠 p', (defaultD a) ^ 𝔰 p' / 4} (𝒬 p') (𝒬 p)) ^ (-(2 * a ^ 2 + a ^ 3)⁻¹) / MeasureTheory.volume (𝓘 p) * ∫⁻ (y : X) in E p', g y‖ₑ) * ∫⁻ (y : X) in E p, g y‖ₑ

            Part 1 of Lemma 6.1.5 (eq. 6.1.43).

            theorem Tile.correlation_zero_of_ne_subset {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {p p' : 𝔓 X} (hle : 𝔰 p' 𝔰 p) {g : X} (hp : ¬(𝓘 p') Metric.ball (𝔠 p) (14 * (defaultD a) ^ 𝔰 p)) :

            Part 2 of Lemma 6.1.5 (claim 6.1.44).