This file contains a reformulation of Theorem 10.0.1. It is not officially part of the blueprint.
Reformulations of Theorem 10.0.1 #
theorem
two_sided_metric_carleson_hasRestrictedWeakType
{X : Type u_1}
{a : ℕ}
[MetricSpace X]
[MeasureTheory.DoublingMeasure X ↑(defaultA a)]
{q q' : NNReal}
{K : X → X → ℂ}
[IsTwoSidedKernel a K]
[CompatibleFunctions ℝ X (defaultA a)]
[IsCancellative X (defaultτ a)]
[Countable (Θ X)]
(ha : 4 ≤ a)
(hq : q ∈ Set.Ioc 1 2)
(hqq' : q.HolderConjugate q')
(hT :
∀ r > 0, MeasureTheory.HasBoundedStrongType (czOperator K r) 2 2 MeasureTheory.volume MeasureTheory.volume ↑(C_Ts a))
:
MeasureTheory.HasRestrictedWeakType (carlesonOperator K) (↑q) (↑q') MeasureTheory.volume MeasureTheory.volume
↑(C10_0_1 a q)
theorem
two_sided_metric_carleson_hasLorentzType
{X : Type u_1}
{a : ℕ}
[MetricSpace X]
[MeasureTheory.DoublingMeasure X ↑(defaultA a)]
{q : NNReal}
{K : X → X → ℂ}
[IsTwoSidedKernel a K]
[CompatibleFunctions ℝ X (defaultA a)]
[IsCancellative X (defaultτ a)]
[Countable (Θ X)]
(ha : 4 ≤ a)
(hq : q ∈ Set.Ioo 1 2)
(hT :
∀ r > 0, MeasureTheory.HasBoundedStrongType (czOperator K r) 2 2 MeasureTheory.volume MeasureTheory.volume ↑(C_Ts a))
:
MeasureTheory.HasLorentzType (carlesonOperator K) (↑q) 1 ↑q ⊤ MeasureTheory.volume MeasureTheory.volume
(4 * ↑(C10_0_1 a q) / ↑q)
The parameter where linear interpolation between t₀ and t₁ results in t.
Equations
- interpolation_param t₀ t₁ t = (t - t₀) / (t₁ - t₀)
Instances For
The constant used in two_sided_metric_carleson_hasStrongType.
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
two_sided_metric_carleson_hasStrongType
{X : Type u_1}
{a : ℕ}
[MetricSpace X]
[MeasureTheory.DoublingMeasure X ↑(defaultA a)]
{q : NNReal}
{K : X → X → ℂ}
[IsTwoSidedKernel a K]
[CompatibleFunctions ℝ X (defaultA a)]
[IsCancellative X (defaultτ a)]
[Countable (Θ X)]
(ha : 4 ≤ a)
(hq : q ∈ Set.Ioo 1 2)
(hT :
∀ r > 0, MeasureTheory.HasBoundedStrongType (czOperator K r) 2 2 MeasureTheory.volume MeasureTheory.volume ↑(C_Ts a))
: