Documentation

Carleson.TwoSidedCarleson.WeakCalderonZygmund

class IsTwoSidedKernel {X : Type u_1} [PseudoMetricSpace X] [MeasureTheory.MeasureSpace X] (a : outParam ) (K : XX) extends IsOneSidedKernel a K :

K is a two-sided Calderon-Zygmund kernel. In the formalization K x y is defined everywhere, even for x = y. The assumptions on K show that K x x = 0.

Instances

    Section 10.2 and Lemma 10.0.3 #

    Question:

    theorem C10_2_1_def (a : ) :
    C10_2_1 a = 2 ^ (4 * a)
    @[irreducible]
    def C10_2_1 (a : ) :

    The constant used in nontangential_from_simple. I(F) think the constant needs to be fixed in the blueprint.

    Equations
    Instances For

      Lemma 10.2.1, formulated differently. The blueprint version is basically this after unfolding HasBoundedWeakType, wnorm and wnorm'.

      theorem lebesgue_differentiation {X : Type u_1} {a : } [MetricSpace X] [MeasureTheory.DoublingMeasure X (defaultA a)] {f : X} (hf : BoundedFiniteSupport f MeasureTheory.volume) :
      ∀ᵐ (x : X), ∃ (c : X) (r : ), Filter.Tendsto (fun (i : ) => (y : X) in Metric.ball (c i) (r i), f y) Filter.atTop (nhds (f x)) Filter.Tendsto r Filter.atTop (nhdsWithin 0 (Set.Ioi 0)) ∀ (i : ), x Metric.ball (c i) (r i)

      Lemma 10.2.2.

      Lemma 10.2.3 is in Mathlib: Pairwise.countable_of_isOpen_disjoint.

      def depth {X : Type u_1} [MetricSpace X] (O : Set X) (x : X) :

      δ(x) in the blueprint. The depth of a point x in a set O is the supremum of radii of balls centred on x that are subsets of O.

      Equations
      Instances For
        theorem depth_lt_iff_not_disjoint {X : Type u_1} [MetricSpace X] {O : Set X} {x : X} {d : } :
        theorem le_depth_iff_subset {X : Type u_1} [MetricSpace X] {O : Set X} {x : X} {d : } :
        theorem depth_pos_iff_mem {X : Type u_1} [MetricSpace X] {O : Set X} {x : X} (hO : IsOpen O) :
        0 < depth O x x O

        A point's depth in an open set O is positive iff it lies in O.

        theorem depth_eq_zero_iff_notMem {X : Type u_1} [MetricSpace X] {O : Set X} {x : X} (hO : IsOpen O) :
        depth O x = 0 xO
        theorem depth_lt_top_iff_ne_univ {X : Type u_1} [MetricSpace X] {O : Set X} {x : X} :

        A point has finite depth in O iff O is not the whole space.

        theorem depth_le_edist_add_depth {X : Type u_1} [MetricSpace X] {O : Set X} {x y : X} :
        depth O x edist x y + depth O y

        A "triangle inequality" for depths.

        theorem depth_bound_1 {X : Type u_1} [MetricSpace X] {O : Set X} {x y : X} (hO : O Set.univ) (h : ¬Disjoint (Metric.ball x ((depth O x).toReal / 6)) (Metric.ball y ((depth O y).toReal / 6))) :
        x Metric.ball y (3 * ((depth O y).toReal / 6))
        theorem depth_bound_2 {X : Type u_1} [MetricSpace X] {O : Set X} {x y : X} (hO : O Set.univ) (h : x Metric.ball y (3 * ((depth O y).toReal / 6))) :
        (depth O x).toReal / 6 + dist x y 8 * (depth O y).toReal / 6
        theorem depth_bound_3 {X : Type u_1} [MetricSpace X] {O : Set X} {x y : X} (hO : O Set.univ) (h : x Metric.ball y (3 * ((depth O y).toReal / 6))) :
        (depth O y).toReal / 6 + dist y x 8 * (depth O x).toReal / 6
        theorem ball_covering_bounded_intersection {X : Type u_1} {a : } [MetricSpace X] [MeasureTheory.DoublingMeasure X (defaultA a)] {O : Set X} (hO : IsOpen O O Set.univ) {U : Set X} (countU : U.Countable) (pdU : U.PairwiseDisjoint fun (c : X) => Metric.ball c ((depth O c).toReal / 6)) {x : X} (mx : x O) :
        {c : X | c U x Metric.ball c (3 * ((depth O c).toReal / 6))}.encard ↑(2 ^ (6 * a))
        theorem ball_covering' {X : Type u_1} {a : } [MetricSpace X] [MeasureTheory.DoublingMeasure X (defaultA a)] {O : Set X} (hO : IsOpen O O Set.univ) :
        ∃ (U : Set X) (r : X), U.Countable (U.PairwiseDisjoint fun (c : X) => Metric.ball c (r c)) cU, Metric.ball c (3 * r c) = O (∀ cU, ¬Disjoint (Metric.ball c (7 * r c)) O) xO, {c : X | c U x Metric.ball c (3 * r c)}.encard ↑(2 ^ (6 * a))

        Lemma 10.2.4, but following the blueprint exactly (with a countable set of centres rather than functions from ).

        theorem ball_covering_finite {X : Type u_1} {a : } [MetricSpace X] {O : Set X} (hO : IsOpen O O Set.univ) {U : Set X} {r' : X} (fU : U.Finite) (pdU : U.PairwiseDisjoint fun (c : X) => Metric.ball c (r' c)) (U₃ : cU, Metric.ball c (3 * r' c) = O) (U₇ : cU, ¬Disjoint (Metric.ball c (7 * r' c)) O) (Ubi : xO, {c : X | c U x Metric.ball c (3 * r' c)}.encard ↑(2 ^ (6 * a))) :
        ∃ (c : X) (r : ), (Set.univ.PairwiseDisjoint fun (i : ) => Metric.ball (c i) (r i)) ⋃ (i : ), Metric.ball (c i) (3 * r i) = O (∀ (i : ), 0 < r i¬Disjoint (Metric.ball (c i) (7 * r i)) O) xO, {i : | x Metric.ball (c i) (3 * r i)}.encard ↑(2 ^ (6 * a))
        theorem ball_covering {X : Type u_1} {a : } [MetricSpace X] [MeasureTheory.DoublingMeasure X (defaultA a)] {O : Set X} (hO : IsOpen O O Set.univ) :
        ∃ (c : X) (r : ), (Set.univ.PairwiseDisjoint fun (i : ) => Metric.ball (c i) (r i)) ⋃ (i : ), Metric.ball (c i) (3 * r i) = O (∀ (i : ), 0 < r i¬Disjoint (Metric.ball (c i) (7 * r i)) O) xO, {i : | x Metric.ball (c i) (3 * r i)}.encard ↑(2 ^ (6 * a))

        Lemma 10.2.4.

        Lemma 10.2.5 #

        Lemma 10.2.5 has an annoying case distinction between the case E_α ≠ X (general case) and E_α = X (finite case). It isn't easy to get rid of this case distinction.

        In the formalization we state most properties of Lemma 10.2.5 twice, once for each case (in some cases the condition is vacuous in the finite case, and then we omit it)

        We could have tried harder to uniformize the cases, but in the finite case there is really only set B*_j, and in the general case it is convenient to index B*_j by the natural numbers.

        def GeneralCase {X : Type u_1} {a : } [MetricSpace X] [MeasureTheory.DoublingMeasure X (defaultA a)] (f : X) (α : ENNReal) :

        The property specifying whether we are in the "general case".

        Equations
        Instances For

          In the finite case, the volume of X is finite.

          def czCenter {X : Type u_1} {a : } [MetricSpace X] [MeasureTheory.DoublingMeasure X (defaultA a)] {f : X} {α : ENNReal} (hX : GeneralCase f α) (i : ) :
          X

          The center of B_j in the proof of Lemma 10.2.5 (general case).

          Equations
          Instances For
            def czRadius {X : Type u_1} {a : } [MetricSpace X] [MeasureTheory.DoublingMeasure X (defaultA a)] {f : X} {α : ENNReal} (hX : GeneralCase f α) (i : ) :

            The radius of B_j in the proof of Lemma 10.2.5 (general case).

            Equations
            Instances For
              @[reducible, inline]
              abbrev czBall {X : Type u_1} {a : } [MetricSpace X] [MeasureTheory.DoublingMeasure X (defaultA a)] {f : X} {α : ENNReal} (hX : GeneralCase f α) (i : ) :
              Set X

              The ball B_j in the proof of Lemma 10.2.5 (general case).

              Equations
              Instances For
                @[reducible, inline]
                abbrev czBall6 {X : Type u_1} {a : } [MetricSpace X] [MeasureTheory.DoublingMeasure X (defaultA a)] {f : X} {α : ENNReal} (hX : GeneralCase f α) (i : ) :
                Set X

                The ball B_j' introduced below Lemma 10.2.5 (general case).

                Equations
                Instances For
                  @[reducible, inline]
                  abbrev czBall3 {X : Type u_1} {a : } [MetricSpace X] [MeasureTheory.DoublingMeasure X (defaultA a)] {f : X} {α : ENNReal} (hX : GeneralCase f α) (i : ) :
                  Set X

                  The ball B_j* in Lemma 10.2.5 (general case).

                  Equations
                  Instances For
                    @[reducible, inline]
                    abbrev czBall7 {X : Type u_1} {a : } [MetricSpace X] [MeasureTheory.DoublingMeasure X (defaultA a)] {f : X} {α : ENNReal} (hX : GeneralCase f α) (i : ) :
                    Set X

                    The ball B_j** in the proof of Lemma 10.2.5 (general case).

                    Equations
                    Instances For
                      theorem czBall_pairwiseDisjoint {X : Type u_1} {a : } [MetricSpace X] [MeasureTheory.DoublingMeasure X (defaultA a)] {f : X} {α : ENNReal} {hX : GeneralCase f α} :
                      theorem iUnion_czBall3 {X : Type u_1} {a : } [MetricSpace X] [MeasureTheory.DoublingMeasure X (defaultA a)] {f : X} {α : ENNReal} {hX : GeneralCase f α} :
                      theorem encard_czBall3_le {X : Type u_1} {a : } [MetricSpace X] [MeasureTheory.DoublingMeasure X (defaultA a)] {f : X} {α : ENNReal} {hX : GeneralCase f α} {y : X} :
                      {i : | y czBall3 hX i}.encard ↑(2 ^ (6 * a))

                      Part of Lemma 10.2.5 (general case).

                      theorem mem_czBall3_finite {X : Type u_1} {a : } [MetricSpace X] [MeasureTheory.DoublingMeasure X (defaultA a)] {f : X} {α : ENNReal} {hX : GeneralCase f α} {y : X} :
                      @[irreducible]
                      def czPartition {X : Type u_1} {a : } [MetricSpace X] [MeasureTheory.DoublingMeasure X (defaultA a)] {f : X} {α : ENNReal} (hX : GeneralCase f α) (i : ) :
                      Set X

                      Q_i in the proof of Lemma 10.2.5 (general case).

                      Equations
                      Instances For
                        theorem czBall_subset_czPartition {X : Type u_1} {a : } [MetricSpace X] [MeasureTheory.DoublingMeasure X (defaultA a)] {f : X} {α : ENNReal} {hX : GeneralCase f α} {i : } :
                        theorem czPartition_subset_czBall3 {X : Type u_1} {a : } [MetricSpace X] [MeasureTheory.DoublingMeasure X (defaultA a)] {f : X} {α : ENNReal} {hX : GeneralCase f α} {i : } :
                        theorem czPartition_pairwiseDisjoint {X : Type u_1} {a : } [MetricSpace X] [MeasureTheory.DoublingMeasure X (defaultA a)] {f : X} {α : ENNReal} {hX : GeneralCase f α} :
                        theorem czPartition_pairwiseDisjoint' {X : Type u_1} {a : } [MetricSpace X] [MeasureTheory.DoublingMeasure X (defaultA a)] {f : X} {α : ENNReal} {hX : GeneralCase f α} {x : X} {i j : } (hi : x czPartition hX i) (hj : x czPartition hX j) :
                        i = j
                        def czApproximation {X : Type u_1} {a : } [MetricSpace X] [MeasureTheory.DoublingMeasure X (defaultA a)] (f : X) (α : ENNReal) (x : X) :

                        The function g in Lemma 10.2.5. (both cases)

                        Equations
                        Instances For
                          theorem czApproximation_def_of_mem {X : Type u_1} {a : } [MetricSpace X] [MeasureTheory.DoublingMeasure X (defaultA a)] {f : X} {α : ENNReal} {hX : GeneralCase f α} {x : X} {i : } (hx : x czPartition hX i) :
                          czApproximation f α x = (y : X) in czPartition hX i, f y
                          theorem czApproximation_def_of_notMem {X : Type u_1} {a : } [MetricSpace X] [MeasureTheory.DoublingMeasure X (defaultA a)] {f : X} {α : ENNReal} {x : X} (hX : GeneralCase f α) (hx : xglobalMaximalFunction MeasureTheory.volume 1 f ⁻¹' Set.Ioi α) :
                          czApproximation f α x = f x
                          theorem czApproximation_def_of_volume_lt {X : Type u_1} {a : } [MetricSpace X] [MeasureTheory.DoublingMeasure X (defaultA a)] {f : X} {α : ENNReal} {x : X} (hX : ¬GeneralCase f α) :
                          czApproximation f α x = (y : X), f y
                          def czRemainder' {X : Type u_1} {a : } [MetricSpace X] [MeasureTheory.DoublingMeasure X (defaultA a)] {f : X} {α : ENNReal} (hX : GeneralCase f α) (i : ) (x : X) :

                          The function b_i in Lemma 10.2.5 (general case).

                          Equations
                          Instances For
                            def czRemainder {X : Type u_1} {a : } [MetricSpace X] [MeasureTheory.DoublingMeasure X (defaultA a)] (f : X) (α : ENNReal) (x : X) :

                            The function b = ∑ⱼ bⱼ introduced below Lemma 10.2.5. In the finite case, we also use this as the function b = b₁ in Lemma 10.2.5. We choose a more convenient definition, but prove in tsum_czRemainder' that this is the same.

                            Equations
                            Instances For
                              theorem tsum_czRemainder' {X : Type u_1} {a : } [MetricSpace X] [MeasureTheory.DoublingMeasure X (defaultA a)] {f : X} {α : ENNReal} (hX : GeneralCase f α) (x : X) :
                              ∑' (i : ), czRemainder' hX i x = czRemainder f α x

                              Part of Lemma 10.2.5, this is essentially (10.2.16) (both cases).

                              Part of Lemma 10.2.5 (both cases).

                              theorem czApproximation_add_czRemainder {X : Type u_1} {a : } [MetricSpace X] [MeasureTheory.DoublingMeasure X (defaultA a)] {f : X} {α : ENNReal} {x : X} :
                              czApproximation f α x + czRemainder f α x = f x

                              Part of Lemma 10.2.5, equation (10.2.16) (both cases). This is true by definition, the work lies in tsum_czRemainder'

                              Equation (10.2.17) specialized to the general case.

                              theorem enorm_czApproximation_le {X : Type u_1} {a : } [MetricSpace X] [MeasureTheory.DoublingMeasure X (defaultA a)] {f : X} {α : ENNReal} {hf : BoundedFiniteSupport f MeasureTheory.volume} ( : ⨍⁻ (x : X), f x‖ₑ α) :
                              ∀ᵐ (x : X), czApproximation f α x‖ₑ 2 ^ (3 * a) * α

                              Part of Lemma 10.2.5, equation (10.2.17) (both cases).

                              Part of Lemma 10.2.5, equation (10.2.18) (both cases).

                              theorem support_czRemainder'_subset {X : Type u_1} {a : } [MetricSpace X] [MeasureTheory.DoublingMeasure X (defaultA a)] {f : X} {α : ENNReal} {hX : GeneralCase f α} {i : } :

                              Part of Lemma 10.2.5, equation (10.2.19) (general case).

                              theorem integral_czRemainder' {X : Type u_1} {a : } [MetricSpace X] [MeasureTheory.DoublingMeasure X (defaultA a)] {f : X} {α : ENNReal} {hX : GeneralCase f α} {i : } :
                              (x : X), czRemainder' hX i x = 0

                              Part of Lemma 10.2.5, equation (10.2.20) (general case).

                              theorem integral_czRemainder {X : Type u_1} {a : } [MetricSpace X] [MeasureTheory.DoublingMeasure X (defaultA a)] {f : X} {α : ENNReal} {hf : BoundedFiniteSupport f MeasureTheory.volume} (hX : ¬GeneralCase f α) ( : 0 < α) :
                              (x : X), czRemainder f α x = 0

                              Part of Lemma 10.2.5, equation (10.2.20) (finite case).

                              Part of Lemma 10.2.5, equation (10.2.21) (general case).

                              Part of Lemma 10.2.5, equation (10.2.21) (finite case).

                              Part of Lemma 10.2.5, equation (10.2.22) (general case).

                              Part of Lemma 10.2.5, equation (10.2.22) (finite case).

                              Part of Lemma 10.2.5, equation (10.2.23) (general case).

                              Part of Lemma 10.2.5, equation (10.2.23) (finite case).

                              theorem c10_0_3_def (a : ) :
                              c10_0_3 a = (2 ^ (a ^ 3 + 12 * a + 4))⁻¹
                              @[irreducible]
                              def c10_0_3 (a : ) :

                              The constant c introduced below Lemma 10.2.5.

                              Equations
                              Instances For
                                def Ω {X : Type u_1} {a : } [MetricSpace X] [MeasureTheory.DoublingMeasure X (defaultA a)] (f : X) (α : ENNReal) :
                                Set X

                                The set Ω introduced below Lemma 10.2.5.

                                Equations
                                Instances For
                                  @[irreducible]
                                  def C10_2_6 (a : ) :

                                  The constant used in estimate_good.

                                  Equations
                                  Instances For
                                    theorem C10_2_6_def (a : ) :
                                    C10_2_6 a = 2 ^ (2 * a ^ 3 + 3 * a + 2) * c10_0_3 a
                                    theorem C10_2_7_def (a : ) :
                                    C10_2_7 a = 2 ^ (a ^ 3 + 2 * a + 1) * c10_0_3 a
                                    @[irreducible]
                                    def C10_2_7 (a : ) :

                                    The constant used in czOperatorBound.

                                    Equations
                                    Instances For
                                      def czOperatorBound {X : Type u_1} {a : } [MetricSpace X] [MeasureTheory.DoublingMeasure X (defaultA a)] {f : X} {α : ENNReal} (hX : GeneralCase f (α'✝ a α)) (x : X) :

                                      The function F defined in Lemma 10.2.7.

                                      Equations
                                      • One or more equations did not get rendered due to their size.
                                      Instances For
                                        theorem estimate_bad_partial {X : Type u_1} {a : } [MetricSpace X] [MeasureTheory.DoublingMeasure X (defaultA a)] {r : } {K : XX} {x : X} [IsTwoSidedKernel a K] {f : X} {α : ENNReal} (hf : BoundedFiniteSupport f MeasureTheory.volume) (hr : 0 < r) ( : ⨍⁻ (x : X), f x‖ₑ / (c10_0_3 a) < α) (hx : x (Ω f (α'✝ a α))) (hX : GeneralCase f (α'✝¹ a α)) :

                                        Lemma 10.2.7. Note that hx implies hX, but we keep the superfluous hypothesis to shorten the statement.

                                        theorem czOperatorBound_inner_le {X : Type u_1} {a : } [MetricSpace X] [MeasureTheory.DoublingMeasure X (defaultA a)] {f : X} {α : ENNReal} (ha : 4 a) (hX : GeneralCase f (α'✝ a α)) {i : } :
                                        ∫⁻ (x : X) in (Ω f (α'✝¹ a α)), ((3 * czRadius hX i).toNNReal / edist x (czCenter hX i)) ^ (↑a)⁻¹ / MeasureTheory.volume (Metric.ball x (dist x (czCenter hX i))) 2 ^ (3 * a)
                                        @[irreducible]
                                        def C10_2_8 (a : ) :

                                        The constant used in distribution_czOperatorBound.

                                        Equations
                                        Instances For
                                          theorem C10_2_8_def (a : ) :
                                          C10_2_8 a = 2 ^ (a ^ 3 + 11 * a + 4)

                                          Lemma 10.2.8

                                          theorem C10_2_9_def (a : ) :
                                          C10_2_9 a = 2 ^ (7 * a) / c10_0_3 a + C10_2_8 a
                                          @[irreducible]
                                          def C10_2_9 (a : ) :

                                          The constant used in estimate_bad.

                                          Equations
                                          Instances For
                                            theorem estimate_bad {X : Type u_1} {a : } [MetricSpace X] [MeasureTheory.DoublingMeasure X (defaultA a)] {r : } {K : XX} [IsTwoSidedKernel a K] {f : X} {α : ENNReal} (ha : 4 a) (hr : 0 < r) (hf : BoundedFiniteSupport f MeasureTheory.volume) ( : ⨍⁻ (x : X), f x‖ₑ / (c10_0_3 a) < α) :

                                            Lemma 10.2.9

                                            theorem C10_0_3_def (a : ) :
                                            C10_0_3 a = 2 ^ (a ^ 3 + 21 * a)
                                            @[irreducible]
                                            def C10_0_3 (a : ) :

                                            The constant used in czOperator_weak_1_1.

                                            Equations
                                            Instances For

                                              Lemma 10.0.3, formulated differently. The blueprint version is basically this after unfolding HasBoundedWeakType, wnorm and wnorm'.