Documentation

Carleson.TwoSidedCarleson.WeakCalderonZygmund

Section 10.2 and Lemma 10.0.3 #

Question:

theorem C10_2_1_def (a : ) :
C10_2_1 a = 2 ^ (4 * a)
@[irreducible]
def C10_2_1 (a : ) :

The constant used in nontangential_from_simple. I(F) think the constant needs to be fixed in the blueprint.

Equations
Instances For

    Lemma 10.2.1, formulated differently. The blueprint version is basically this after unfolding HasBoundedWeakType, wnorm and wnorm'.

    theorem lebesgue_differentiation {X : Type u_1} {a : } [MetricSpace X] [MeasureTheory.DoublingMeasure X (defaultA a)] [CompatibleFunctions X (defaultA a)] [IsCancellative X (defaultτ a)] {f : X} (hf : BoundedFiniteSupport f MeasureTheory.volume) :
    ∀ᵐ (x : X), ∃ (c : X) (r : ), Filter.Tendsto (fun (i : ) => (y : X) in Metric.ball (c i) (r i), f y) Filter.atTop (nhds (f x)) Filter.Tendsto r Filter.atTop (nhdsWithin 0 (Set.Ioi 0)) ∀ (i : ), x Metric.ball (c i) (r i)

    Lemma 10.2.2. Should be an easy consequence of VitaliFamily.ae_tendsto_average.

    Lemma 10.2.3 is in Mathlib: Pairwise.countable_of_isOpen_disjoint.

    theorem ball_covering {X : Type u_1} {a : } [MetricSpace X] [MeasureTheory.DoublingMeasure X (defaultA a)] [CompatibleFunctions X (defaultA a)] [IsCancellative X (defaultτ a)] (ha : 4 a) {O : Set X} (hO : IsOpen O O Set.univ) :
    ∃ (c : X) (r : ), (Set.univ.PairwiseDisjoint fun (i : ) => Metric.closedBall (c i) (r i)) ⋃ (i : ), Metric.ball (c i) (3 * r i) = O (∀ (i : ), ¬Disjoint (Metric.ball (c i) (7 * r i)) O) xO, Cardinal.mk {i : | x Metric.ball (c i) (3 * r i)} ↑(2 ^ (6 * a))

    Lemma 10.2.4 This is very similar to Vitali.exists_disjoint_subfamily_covering_enlargement. Can we use that (or adapt it so that we can use it)?

    Lemma 10.2.5 #

    Lemma 10.2.5 has an annoying case distinction between the case E_α ≠ X (general case) and E_α = X (finite case). It isn't easy to get rid of this case distinction.

    In the formalization we state most properties of Lemma 10.2.5 twice, once for each case (in some cases the condition is vacuous in the finite case, and then we omit it)

    We could have tried harder to uniformize the cases, but in the finite case there is really only set B*_j, and in the general case it is convenient to index B*_j by the natural numbers.

    def GeneralCase {X : Type u_1} {a : } [MetricSpace X] [MeasureTheory.DoublingMeasure X (defaultA a)] (f : X) (α : ENNReal) :

    The property specifying whether we are in the "general case".

    Equations
    Instances For

      In the finite case, the volume of X is finite.

      def czCenter {X : Type u_1} {a : } [MetricSpace X] [MeasureTheory.DoublingMeasure X (defaultA a)] {f : X} {α : ENNReal} [CompatibleFunctions X (defaultA a)] [IsCancellative X (defaultτ a)] (ha : 4 a) (hf : BoundedFiniteSupport f MeasureTheory.volume) (hX : GeneralCase f α) (i : ) :
      X

      The center of B_j in the proof of Lemma 10.2.5 (general case).

      Equations
      Instances For
        def czRadius {X : Type u_1} {a : } [MetricSpace X] [MeasureTheory.DoublingMeasure X (defaultA a)] {f : X} {α : ENNReal} [CompatibleFunctions X (defaultA a)] [IsCancellative X (defaultτ a)] (ha : 4 a) (hf : BoundedFiniteSupport f MeasureTheory.volume) (hX : GeneralCase f α) (i : ) :

        The radius of B_j in the proof of Lemma 10.2.5 (general case).

        Equations
        Instances For
          @[reducible, inline]
          abbrev czBall {X : Type u_1} {a : } [MetricSpace X] [MeasureTheory.DoublingMeasure X (defaultA a)] {f : X} {α : ENNReal} [CompatibleFunctions X (defaultA a)] [IsCancellative X (defaultτ a)] (ha : 4 a) (hf : BoundedFiniteSupport f MeasureTheory.volume) (hX : GeneralCase f α) (i : ) :
          Set X

          The ball B_j in the proof of Lemma 10.2.5 (general case).

          Equations
          Instances For
            @[reducible, inline]
            abbrev czBall2 {X : Type u_1} {a : } [MetricSpace X] [MeasureTheory.DoublingMeasure X (defaultA a)] {f : X} {α : ENNReal} [CompatibleFunctions X (defaultA a)] [IsCancellative X (defaultτ a)] (ha : 4 a) (hf : BoundedFiniteSupport f MeasureTheory.volume) (hX : GeneralCase f α) (i : ) :
            Set X

            The ball B_j' introduced below Lemma 10.2.5 (general case).

            Equations
            Instances For
              @[reducible, inline]
              abbrev czBall3 {X : Type u_1} {a : } [MetricSpace X] [MeasureTheory.DoublingMeasure X (defaultA a)] {f : X} {α : ENNReal} [CompatibleFunctions X (defaultA a)] [IsCancellative X (defaultτ a)] (ha : 4 a) (hf : BoundedFiniteSupport f MeasureTheory.volume) (hX : GeneralCase f α) (i : ) :
              Set X

              The ball B_j* in Lemma 10.2.5 (general case).

              Equations
              Instances For
                @[reducible, inline]
                abbrev czBall7 {X : Type u_1} {a : } [MetricSpace X] [MeasureTheory.DoublingMeasure X (defaultA a)] {f : X} {α : ENNReal} [CompatibleFunctions X (defaultA a)] [IsCancellative X (defaultτ a)] (ha : 4 a) (hf : BoundedFiniteSupport f MeasureTheory.volume) (hX : GeneralCase f α) (i : ) :
                Set X

                The ball B_j** in the proof of Lemma 10.2.5 (general case).

                Equations
                Instances For
                  theorem cardinalMk_czBall3_le {X : Type u_1} {a : } [MetricSpace X] [MeasureTheory.DoublingMeasure X (defaultA a)] {f : X} {α : ENNReal} [CompatibleFunctions X (defaultA a)] [IsCancellative X (defaultτ a)] (ha : 4 a) {hf : BoundedFiniteSupport f MeasureTheory.volume} {hX : GeneralCase f α} {y : X} (hy : α < globalMaximalFunction MeasureTheory.volume 1 f y) :
                  Cardinal.mk {i : | y czBall3 ha hf hX i} ↑(2 ^ (6 * a))

                  Part of Lemma 10.2.5 (general case).

                  @[irreducible]
                  def czPartition {X : Type u_1} {a : } [MetricSpace X] [MeasureTheory.DoublingMeasure X (defaultA a)] {f : X} {α : ENNReal} [CompatibleFunctions X (defaultA a)] [IsCancellative X (defaultτ a)] (ha : 4 a) (hf : BoundedFiniteSupport f MeasureTheory.volume) (hX : GeneralCase f α) (i : ) :
                  Set X

                  Q_i in the proof of Lemma 10.2.5 (general case).

                  Equations
                  Instances For
                    theorem czBall_subset_czPartition {X : Type u_1} {a : } [MetricSpace X] [MeasureTheory.DoublingMeasure X (defaultA a)] {f : X} {α : ENNReal} [CompatibleFunctions X (defaultA a)] [IsCancellative X (defaultτ a)] (ha : 4 a) {hf : BoundedFiniteSupport f MeasureTheory.volume} {hX : GeneralCase f α} {i : } :
                    czBall ha hf hX i czPartition ha hf hX i
                    theorem czPartition_subset_czBall3 {X : Type u_1} {a : } [MetricSpace X] [MeasureTheory.DoublingMeasure X (defaultA a)] {f : X} {α : ENNReal} [CompatibleFunctions X (defaultA a)] [IsCancellative X (defaultτ a)] (ha : 4 a) {hf : BoundedFiniteSupport f MeasureTheory.volume} {hX : GeneralCase f α} {i : } :
                    czPartition ha hf hX i czBall3 ha hf hX i
                    theorem czPartition_pairwiseDisjoint' {X : Type u_1} {a : } [MetricSpace X] [MeasureTheory.DoublingMeasure X (defaultA a)] {f : X} {α : ENNReal} [CompatibleFunctions X (defaultA a)] [IsCancellative X (defaultτ a)] (ha : 4 a) {hf : BoundedFiniteSupport f MeasureTheory.volume} {hX : GeneralCase f α} {x : X} {i j : } (hi : x czPartition ha hf hX i) (hj : x czPartition ha hf hX j) :
                    i = j

                    The function g in Lemma 10.2.5. (both cases)

                    Equations
                    Instances For
                      theorem czApproximation_def_of_mem {X : Type u_1} {a : } [MetricSpace X] [MeasureTheory.DoublingMeasure X (defaultA a)] {f : X} {α : ENNReal} [CompatibleFunctions X (defaultA a)] [IsCancellative X (defaultτ a)] (ha : 4 a) {hf : BoundedFiniteSupport f MeasureTheory.volume} {hX : GeneralCase f α} {x : X} {i : } (hx : x czPartition ha hf hX i) :
                      czApproximation ha hf α x = (y : X) in czPartition ha hf hX i, f y
                      theorem czApproximation_def_of_volume_lt {X : Type u_1} {a : } [MetricSpace X] [MeasureTheory.DoublingMeasure X (defaultA a)] {f : X} {α : ENNReal} [CompatibleFunctions X (defaultA a)] [IsCancellative X (defaultτ a)] (ha : 4 a) {hf : BoundedFiniteSupport f MeasureTheory.volume} {x : X} (hX : ¬GeneralCase f α) :
                      czApproximation ha hf α x = (y : X), f y
                      def czRemainder' {X : Type u_1} {a : } [MetricSpace X] [MeasureTheory.DoublingMeasure X (defaultA a)] {f : X} {α : ENNReal} [CompatibleFunctions X (defaultA a)] [IsCancellative X (defaultτ a)] (ha : 4 a) (hf : BoundedFiniteSupport f MeasureTheory.volume) (hX : GeneralCase f α) (i : ) (x : X) :

                      The function b_i in Lemma 10.2.5 (general case).

                      Equations
                      Instances For

                        The function b = ∑ⱼ bⱼ introduced below Lemma 10.2.5. In the finite case, we also use this as the function b = b₁ in Lemma 10.2.5. We choose a more convenient definition, but prove in tsum_czRemainder' that this is the same.

                        Equations
                        Instances For
                          def tsum_czRemainder' {X : Type u_1} {a : } [MetricSpace X] [MeasureTheory.DoublingMeasure X (defaultA a)] {f : X} {α : ENNReal} [CompatibleFunctions X (defaultA a)] [IsCancellative X (defaultτ a)] (ha : 4 a) (hf : BoundedFiniteSupport f MeasureTheory.volume) (hX : GeneralCase f α) (x : X) :
                          ∑ᶠ (i : ), czRemainder' ha hf hX i x = czRemainder ha hf α x

                          Part of Lemma 10.2.5, this is essentially (10.2.16) (both cases).

                          Equations
                          • =
                          Instances For

                            Part of Lemma 10.2.5 (both cases).

                            theorem czApproximation_add_czRemainder {X : Type u_1} {a : } [MetricSpace X] [MeasureTheory.DoublingMeasure X (defaultA a)] {f : X} {α : ENNReal} [CompatibleFunctions X (defaultA a)] [IsCancellative X (defaultτ a)] (ha : 4 a) {hf : BoundedFiniteSupport f MeasureTheory.volume} {x : X} :
                            czApproximation ha hf α x + czRemainder ha hf α x = f x

                            Part of Lemma 10.2.5, equation (10.2.16) (both cases). This is true by definition, the work lies in tsum_czRemainder'

                            theorem norm_czApproximation_le {X : Type u_1} {a : } [MetricSpace X] [MeasureTheory.DoublingMeasure X (defaultA a)] {f : X} {α : ENNReal} [CompatibleFunctions X (defaultA a)] [IsCancellative X (defaultτ a)] (ha : 4 a) {hf : BoundedFiniteSupport f MeasureTheory.volume} ( : ⨍⁻ (x : X), f x‖ₑ < α) :
                            ∀ᵐ (x : X), czApproximation ha hf α x‖ₑ 2 ^ (3 * a) * α

                            Part of Lemma 10.2.5, equation (10.2.17) (both cases).

                            theorem norm_czApproximation_le_infinite {X : Type u_1} {a : } [MetricSpace X] [MeasureTheory.DoublingMeasure X (defaultA a)] {f : X} {α : ENNReal} [CompatibleFunctions X (defaultA a)] [IsCancellative X (defaultτ a)] (ha : 4 a) {hf : BoundedFiniteSupport f MeasureTheory.volume} (hX : GeneralCase f α) ( : 0 < α) :
                            ∀ᵐ (x : X), czApproximation ha hf α x‖ₑ 2 ^ (3 * a) * α

                            Equation (10.2.17) specialized to the general case.

                            Part of Lemma 10.2.5, equation (10.2.18) (both cases).

                            theorem support_czRemainder'_subset {X : Type u_1} {a : } [MetricSpace X] [MeasureTheory.DoublingMeasure X (defaultA a)] {f : X} {α : ENNReal} [CompatibleFunctions X (defaultA a)] [IsCancellative X (defaultτ a)] (ha : 4 a) {hf : BoundedFiniteSupport f MeasureTheory.volume} {hX : GeneralCase f α} ( : 0 < α) {i : } :
                            Function.support (czRemainder' ha hf hX i) czBall3 ha hf hX i

                            Part of Lemma 10.2.5, equation (10.2.19) (general case).

                            theorem integral_czRemainder' {X : Type u_1} {a : } [MetricSpace X] [MeasureTheory.DoublingMeasure X (defaultA a)] {f : X} {α : ENNReal} [CompatibleFunctions X (defaultA a)] [IsCancellative X (defaultτ a)] (ha : 4 a) {hf : BoundedFiniteSupport f MeasureTheory.volume} {hX : GeneralCase f α} ( : 0 < α) {i : } :
                            (x : X), czRemainder' ha hf hX i x = 0

                            Part of Lemma 10.2.5, equation (10.2.20) (general case).

                            theorem integral_czRemainder {X : Type u_1} {a : } [MetricSpace X] [MeasureTheory.DoublingMeasure X (defaultA a)] {f : X} {α : ENNReal} [CompatibleFunctions X (defaultA a)] [IsCancellative X (defaultτ a)] (ha : 4 a) {hf : BoundedFiniteSupport f MeasureTheory.volume} (hX : ¬GeneralCase f α) ( : 0 < α) :
                            (x : X), czRemainder ha hf α x = 0

                            Part of Lemma 10.2.5, equation (10.2.20) (finite case).

                            theorem eLpNorm_czRemainder'_le {X : Type u_1} {a : } [MetricSpace X] [MeasureTheory.DoublingMeasure X (defaultA a)] {f : X} {α : ENNReal} [CompatibleFunctions X (defaultA a)] [IsCancellative X (defaultτ a)] (ha : 4 a) {hf : BoundedFiniteSupport f MeasureTheory.volume} {hX : GeneralCase f α} ( : 0 < α) {i : } :

                            Part of Lemma 10.2.5, equation (10.2.21) (general case).

                            Part of Lemma 10.2.5, equation (10.2.21) (finite case).

                            Part of Lemma 10.2.5, equation (10.2.22) (general case).

                            Part of Lemma 10.2.5, equation (10.2.22) (finite case).

                            Part of Lemma 10.2.5, equation (10.2.23) (general case).

                            Part of Lemma 10.2.5, equation (10.2.23) (finite case).

                            theorem c10_0_3_def (a : ) :
                            c10_0_3 a = (2 ^ (a ^ 3 + 12 * a + 4))⁻¹
                            @[irreducible]
                            def c10_0_3 (a : ) :

                            The constant c introduced below Lemma 10.2.5.

                            Equations
                            Instances For

                              The set Ω introduced below Lemma 10.2.5.

                              Equations
                              Instances For
                                theorem C10_2_6_def (a : ) :
                                C10_2_6 a = 2 ^ (2 * a ^ 3 + 3 * a + 2) * c10_0_3 a
                                @[irreducible]
                                def C10_2_6 (a : ) :

                                The constant used in estimate_good.

                                Equations
                                Instances For

                                  Lemma 10.2.6

                                  theorem C10_2_7_def (a : ) :
                                  C10_2_7 a = 2 ^ (a ^ 3 + 2 * a + 1) * c10_0_3 a
                                  @[irreducible]
                                  def C10_2_7 (a : ) :

                                  The constant used in czOperatorBound.

                                  Equations
                                  Instances For

                                    The function F defined in Lemma 10.2.7.

                                    Equations
                                    • One or more equations did not get rendered due to their size.
                                    Instances For
                                      theorem estimate_bad_partial {X : Type u_1} {a : } [MetricSpace X] [MeasureTheory.DoublingMeasure X (defaultA a)] {r : } {K : XX} {x : X} [IsTwoSidedKernel a K] {f : X} {α : ENNReal} [CompatibleFunctions X (defaultA a)] [IsCancellative X (defaultτ a)] (ha : 4 a) {hf : BoundedFiniteSupport f MeasureTheory.volume} ( : ⨍⁻ (x : X), f x‖ₑ / (c10_0_3 a) < α) (hx : x (Ω ha hf α)) (hX : GeneralCase f α) :
                                      czOperator K r (czRemainder ha hf α) x‖ₑ 3 * czOperatorBound ha hf hX x + α / 8

                                      Lemma 10.2.7. Note that hx implies hX, but we keep the superfluous hypothesis to shorten the statement.

                                      theorem C10_2_8_def (a : ) :
                                      C10_2_8 a = 2 ^ (a ^ 3 + 9 * a + 4)
                                      @[irreducible]
                                      def C10_2_8 (a : ) :

                                      The constant used in distribution_czOperatorBound.

                                      Equations
                                      Instances For
                                        theorem C10_2_9_def (a : ) :
                                        C10_2_9 a = 2 ^ (5 * a) / c10_0_3 a + 2 ^ (a ^ 3 + 9 * a + 4)
                                        @[irreducible]
                                        def C10_2_9 (a : ) :

                                        The constant used in estimate_bad.

                                        Equations
                                        Instances For
                                          theorem estimate_bad {X : Type u_1} {a : } [MetricSpace X] [MeasureTheory.DoublingMeasure X (defaultA a)] {r : } {K : XX} [IsTwoSidedKernel a K] {f : X} {α : ENNReal} [CompatibleFunctions X (defaultA a)] [IsCancellative X (defaultτ a)] (ha : 4 a) {hf : BoundedFiniteSupport f MeasureTheory.volume} ( : ⨍⁻ (x : X), f x‖ₑ / (c10_0_3 a) < α) (hX : GeneralCase f α) :

                                          Lemma 10.2.9

                                          theorem C10_0_3_def (a : ) :
                                          C10_0_3 a = 2 ^ (a ^ 3 + 19 * a)
                                          @[irreducible]
                                          def C10_0_3 (a : ) :

                                          The constant used in czoperator_weak_1_1.

                                          Equations
                                          Instances For

                                            Lemma 10.0.3, formulated differently. The blueprint version is basically this after unfolding HasBoundedWeakType, wnorm and wnorm'.