Documentation

Carleson.ToMathlib.RealInterpolation.LorentzInterpolation

The Marcinkiewisz interpolation theorem for Lorentz spaces #

def C_LorentzInterpolation (p₀ p₁ q₀ q₁ q : ENNReal) (C₀ C₁ A : NNReal) (t : ENNReal) :

The constant occurring in the general real interpolation theorem (for Lorentz spaces)

Equations
Instances For
    theorem exists_hasLorentzType_real_interpolation {α : Type u_1} {α' : Type u_2} {E₁ : Type u_5} {E₂ : Type u_6} {m : MeasurableSpace α} {m' : MeasurableSpace α'} {μ : MeasureTheory.Measure α} {ν : MeasureTheory.Measure α'} [TopologicalSpace E₁] [TopologicalSpace E₂] [ENormedAddCommMonoid E₁] [ENormedAddCommMonoid E₂] {T : (αE₁)α'E₂} {p₀ p₁ r₀ r₁ q₀ q₁ s₀ s₁ p q : ENNReal} [MeasurableSpace E₁] [TopologicalSpace E₁] [ENormedAddCommMonoid E₁] [MeasurableSpace E₂] [TopologicalSpace E₂] [ENormedAddCommMonoid E₂] (hp₀ : 1 p₀) (hp₁ : 1 p₁) (hr₀ : 1 r₀) (hr₁ : 1 r₁) (hq₀ : 1 q₀) (hq₁ : 1 q₁) (hs₀ : 1 s₀) (hs₁ : 1 s₁) (hp₀p₁ : p₀ p₁) (hq₀q₁ : q₀ q₁) {C₀ C₁ t A : NNReal} (hA : 0 < A) (ht : t Set.Ioo 0 1) (hC₀ : 0 < C₀) (hC₁ : 0 < C₁) (hp : p⁻¹ = (1 - t) / p₀ + t / p₁) (hq : q⁻¹ = (1 - t) / q₀ + t / q₁) (hmT : ∀ (f : αE₁), MeasureTheory.MemLorentz f p q μMeasureTheory.AEStronglyMeasurable (T f) ν) (hT : MeasureTheory.AESubadditiveOn T (fun (f : αE₁) => MeasureTheory.MemLorentz f p₀ r₀ μ MeasureTheory.MemLorentz f p₁ r₁ μ) (↑A) ν) (h₀T : MeasureTheory.HasLorentzType T p₀ r₀ q₀ s₀ μ ν C₀) (h₁T : MeasureTheory.HasLorentzType T p₁ r₁ q₁ s₁ μ ν C₁) (r : ENNReal) :
    0 < rMeasureTheory.HasLorentzType T p r q r μ ν (C_LorentzInterpolation p₀ p₁ q₀ q₁ q C₀ C₁ A t)

    General Marcinkiewicz real interpolation theorem