Documentation

Carleson.TwoSidedCarleson.Basic

noncomputable def czOperator {X : Type u_2} [PseudoMetricSpace X] [MeasureTheory.MeasureSpace X] (K : XX) (r : ) (f : X) (x : X) :

The Calderon Zygmund operator T_r in chapter Two-sided Metric Space Carleson

Equations
Instances For
    theorem czOperator_bound {X : Type u_1} {a : } [MetricSpace X] [MeasureTheory.DoublingMeasure X (defaultA a)] {r : } {K : XX} [IsOneSidedKernel a K] {g : X} (hg : BoundedFiniteSupport g MeasureTheory.volume) (hr : 0 < r) (x : X) :
    ∃ (M : NNReal), ∀ᵐ (y : X) MeasureTheory.volume.restrict (Metric.ball x r), K x y * g y M
    theorem czOperator_welldefined {X : Type u_1} {a : } [MetricSpace X] [MeasureTheory.DoublingMeasure X (defaultA a)] {r : } {K : XX} [IsOneSidedKernel a K] {g : X} (hg : BoundedFiniteSupport g MeasureTheory.volume) (hr : 0 < r) (x : X) :
    theorem czOperator_sub {X : Type u_1} {a : } [MetricSpace X] [MeasureTheory.DoublingMeasure X (defaultA a)] {r : } {K : XX} [IsOneSidedKernel a K] {f g : X} (hf : BoundedFiniteSupport f MeasureTheory.volume) (hg : BoundedFiniteSupport g MeasureTheory.volume) (hr : 0 < r) :
    czOperator K r (f - g) = czOperator K r f - czOperator K r g
    theorem geometric_series_estimate {x : } (hx : 2 x) :
    ∑' (n : ), 2 ^ (-n / x) 2 ^ x

    Lemma 10.1.1