The operator T_{s₁, s₂} introduced in Lemma 3.0.3.
Equations
Instances For
The operator T_{2, σ₁, σ₂} introduced in Lemma 3.0.4.
Instances For
Convenience structure for the parameters that stay constant throughout the recursive calls to finitary Carleson in the proof of Lemma 3.0.4.
- Q : MeasureTheory.SimpleFunc X (Θ X)
- BST_T_Q (θ : Θ X) : MeasureTheory.HasBoundedStrongType (fun (x1 : X → ℂ) (x2 : X) => linearizedNontangentialOperator (⇑self.Q) θ K x1 x2) 2 2 MeasureTheory.volume MeasureTheory.volume ↑(C_Ts a)
- hqq' : q.HolderConjugate q'
- bF : Bornology.IsBounded F
- mF : MeasurableSet F
- mf : Measurable f
- mσ₁ : Measurable σ₁
- mσ₂ : Measurable σ₂
Instances For
All the parameters needed to apply the recursion of Lemma 3.0.4.
- CP : CP304 q q' F f σ₁ σ₂
CPholds all constant parameters. - G : Set X
Gis the set being recursed on. - bG : Bornology.IsBounded self.G
- mG : MeasurableSet self.G
Instances For
Construct G_{n+1} given G_n.
Instances For
slice CP bG mG n contains G_n and its associated data.
Instances For
The sets G_n become arbitrarily small.
The slightly unusual way of writing the integrand is to facilitate applying the monotone convergence theorem.
Lemma 3.0.4.
Lemma 3.0.3. B is the blueprint's S.
There exists a uniform bound for all possible values of L302 and U302 over the annulus in
R_truncation.
The operator T_{R₁, R₂, R} introduced in Lemma 3.0.2.
Equations
- T_R K Q R₁ R₂ R f x = (Metric.ball (cancelPt X) R).indicator (fun (x : X) => carlesonOperatorIntegrand K (Q x) R₁ R₂ f x) x
Instances For
Lemma 3.0.2.