Documentation

Carleson.MetricCarleson.Truncation

def T_S {X : Type u_1} {a : } [MetricSpace X] {K : XX} [KernelProofData a K] (Q : MeasureTheory.SimpleFunc X (Θ X)) (s₁ s₂ : ) (f : X) (x : X) :

The operator T_{s₁, s₂} introduced in Lemma 3.0.3.

Equations
Instances For
    theorem measurable_T_inner_integral {X : Type u_1} {a : } [MetricSpace X] {K : XX} [KernelProofData a K] {Q : MeasureTheory.SimpleFunc X (Θ X)} {f : X} {s : } (mf : Measurable f) :
    Measurable fun (x : X) => (y : X), Ks s x y * f y * Complex.exp (Complex.I * ((Q x) y))
    theorem measurable_T_S {X : Type u_1} {a : } [MetricSpace X] {K : XX} [KernelProofData a K] {Q : MeasureTheory.SimpleFunc X (Θ X)} {f : X} {s₁ s₂ : } (mf : Measurable f) :
    Measurable fun (x : X) => T_S Q s₁ s₂ f x
    def T_lin {X : Type u_1} {a : } [MetricSpace X] {K : XX} [KernelProofData a K] (Q : MeasureTheory.SimpleFunc X (Θ X)) (σ₁ σ₂ : X) (f : X) (x : X) :

    The operator T_{2, σ₁, σ₂} introduced in Lemma 3.0.4.

    Equations
    • T_lin Q σ₁ σ₂ f x = T_S Q (σ₁ x) (σ₂ x) f x
    Instances For
      theorem measurable_T_lin {X : Type u_1} {a : } [MetricSpace X] {K : XX} [KernelProofData a K] {Q : MeasureTheory.SimpleFunc X (Θ X)} {f : X} {σ₁ σ₂ : X} (mf : Measurable f) (mσ₁ : Measurable σ₁) (mσ₂ : Measurable σ₂) (rσ₁ : (Set.range σ₁).Finite) (rσ₂ : (Set.range σ₂).Finite) :
      Measurable fun (x : X) => T_lin Q σ₁ σ₂ f x
      structure CP304 {X : Type u_1} {a : } [MetricSpace X] (q q' : NNReal) (F : Set X) {K : XX} [KernelProofData a K] (f : X) (σ₁ σ₂ : X) :
      Type u_1

      Convenience structure for the parameters that stay constant throughout the recursive calls to finitary Carleson in the proof of Lemma 3.0.4.

      Instances For
        theorem finitary_carleson_step {X : Type u_1} {a : } [MetricSpace X] {q q' : NNReal} {F G : Set X} {K : XX} [KernelProofData a K] {f : X} {σ₁ σ₂ : X} [IsCancellative X (defaultτ a)] (CP : CP304 q q' F f σ₁ σ₂) (bG : Bornology.IsBounded G) (mG : MeasurableSet G) :
        structure P304 {X : Type u_1} {a : } [MetricSpace X] (q q' : NNReal) (F : Set X) {K : XX} [KernelProofData a K] (f : X) (σ₁ σ₂ : X) :
        Type u_1

        All the parameters needed to apply the recursion of Lemma 3.0.4.

        Instances For
          def P304.succ {X : Type u_1} {a : } [MetricSpace X] {q q' : NNReal} {F : Set X} {K : XX} [KernelProofData a K] {f : X} {σ₁ σ₂ : X} [IsCancellative X (defaultτ a)] (P : P304 q q' F f σ₁ σ₂) :
          P304 q q' F f σ₁ σ₂

          Construct G_{n+1} given G_n.

          Equations
          Instances For
            def slice {X : Type u_1} {a : } [MetricSpace X] {q q' : NNReal} {F G : Set X} {K : XX} [KernelProofData a K] {f : X} {σ₁ σ₂ : X} [IsCancellative X (defaultτ a)] (CP : CP304 q q' F f σ₁ σ₂) (bG : Bornology.IsBounded G) (mG : MeasurableSet G) (n : ) :
            P304 q q' F f σ₁ σ₂

            slice CP bG mG n contains G_n and its associated data.

            Equations
            Instances For
              @[simp]
              theorem slice_CP {X : Type u_1} {a : } [MetricSpace X] {q q' : NNReal} {F G : Set X} {K : XX} [KernelProofData a K] {f : X} {σ₁ σ₂ : X} [IsCancellative X (defaultτ a)] {CP : CP304 q q' F f σ₁ σ₂} {bG : Bornology.IsBounded G} {mG : MeasurableSet G} {n : } :
              (slice CP bG mG n).CP = CP
              theorem slice_G_subset {X : Type u_1} {a : } [MetricSpace X] {q q' : NNReal} {F G : Set X} {K : XX} [KernelProofData a K] {f : X} {σ₁ σ₂ : X} [IsCancellative X (defaultτ a)] {CP : CP304 q q' F f σ₁ σ₂} {bG : Bornology.IsBounded G} {mG : MeasurableSet G} {n : } :
              (slice CP bG mG (n + 1)).G (slice CP bG mG n).G
              theorem antitone_slice_G {X : Type u_1} {a : } [MetricSpace X] {q q' : NNReal} {F G : Set X} {K : XX} [KernelProofData a K] {f : X} {σ₁ σ₂ : X} [IsCancellative X (defaultτ a)] {CP : CP304 q q' F f σ₁ σ₂} {bG : Bornology.IsBounded G} {mG : MeasurableSet G} :
              Antitone fun (n : ) => (slice CP bG mG n).G
              theorem volume_slice {X : Type u_1} {a : } [MetricSpace X] {q q' : NNReal} {F G : Set X} {K : XX} [KernelProofData a K] {f : X} {σ₁ σ₂ : X} [IsCancellative X (defaultτ a)] {CP : CP304 q q' F f σ₁ σ₂} {bG : Bornology.IsBounded G} {mG : MeasurableSet G} {n : } :
              2 * MeasureTheory.volume (slice CP bG mG (n + 1)).G MeasureTheory.volume (slice CP bG mG n).G
              theorem volume_slice_le_inv_two_pow_mul {X : Type u_1} {a : } [MetricSpace X] {q q' : NNReal} {F G : Set X} {K : XX} [KernelProofData a K] {f : X} {σ₁ σ₂ : X} [IsCancellative X (defaultτ a)] {CP : CP304 q q' F f σ₁ σ₂} {bG : Bornology.IsBounded G} {mG : MeasurableSet G} {n : } :
              theorem exists_volume_slice_lt_eps {X : Type u_1} {a : } [MetricSpace X] {q q' : NNReal} {F G : Set X} {K : XX} [KernelProofData a K] {f : X} {σ₁ σ₂ : X} [IsCancellative X (defaultτ a)] {CP : CP304 q q' F f σ₁ σ₂} {bG : Bornology.IsBounded G} {mG : MeasurableSet G} {ε : ENNReal} (εpos : 0 < ε) :
              ∃ (n : ), MeasureTheory.volume (slice CP bG mG (n + 1)).G < ε

              The sets G_n become arbitrarily small.

              theorem slice_integral_bound {X : Type u_1} {a : } [MetricSpace X] {q q' : NNReal} {F G : Set X} {K : XX} [KernelProofData a K] {f : X} {σ₁ σ₂ : X} [IsCancellative X (defaultτ a)] {CP : CP304 q q' F f σ₁ σ₂} {bG : Bornology.IsBounded G} {mG : MeasurableSet G} {n : } :
              ∫⁻ (x : X) in (slice CP bG mG n).G \ (slice CP bG mG (n + 1)).G, T_lin CP.Q σ₁ σ₂ f x‖ₑ (C2_0_1 a q) * MeasureTheory.volume (slice CP bG mG n).G ^ (↑q')⁻¹ * MeasureTheory.volume F ^ (↑q)⁻¹
              theorem slice_integral_bound_sum {X : Type u_1} {a : } [MetricSpace X] {q q' : NNReal} {F G : Set X} {K : XX} [KernelProofData a K] {f : X} {σ₁ σ₂ : X} [IsCancellative X (defaultτ a)] {CP : CP304 q q' F f σ₁ σ₂} {bG : Bornology.IsBounded G} {mG : MeasurableSet G} {n : } :
              ∫⁻ (x : X), (G \ (slice CP bG mG (n + 1)).G).indicator (fun (x : X) => T_lin CP.Q σ₁ σ₂ f x‖ₑ) x ((C2_0_1 a q) * iFinset.range (n + 1), (2⁻¹ ^ i) ^ (↑q')⁻¹) * MeasureTheory.volume G ^ (↑q')⁻¹ * MeasureTheory.volume F ^ (↑q)⁻¹

              The slightly unusual way of writing the integrand is to facilitate applying the monotone convergence theorem.

              theorem sum_le_four_div_q_sub_one {q q' : NNReal} (hq : q Set.Ioc 1 2) (hqq' : q.HolderConjugate q') {n : } :
              iFinset.range n, (2⁻¹ ^ i) ^ (↑q')⁻¹ ↑(2 ^ 2 / (q - 1))
              def C3_0_4 (a : ) (q : NNReal) :

              The constant used in linearized_truncation and S_truncation. Has value 2 ^ (442 * a ^ 3 + 2) in the blueprint.

              Equations
              Instances For
                theorem eq_C3_0_4 {a : } {q : NNReal} :
                C2_0_1 a q * (2 ^ 2 / (q - 1)) = C3_0_4 a q
                theorem linearized_truncation {X : Type u_1} {a : } [MetricSpace X] {q q' : NNReal} {F G : Set X} {K : XX} [KernelProofData a K] {Q : MeasureTheory.SimpleFunc X (Θ X)} {f : X} {σ₁ σ₂ : X} [IsCancellative X (defaultτ a)] (hq : q Set.Ioc 1 2) (hqq' : q.HolderConjugate q') (bF : Bornology.IsBounded F) (bG : Bornology.IsBounded G) (mF : MeasurableSet F) (mG : MeasurableSet G) (mf : Measurable f) (nf : (fun (x : X) => f x) F.indicator 1) (mσ₁ : Measurable σ₁) (mσ₂ : Measurable σ₂) (rσ₁ : (Set.range σ₁).Finite) (rσ₂ : (Set.range σ₂).Finite) ( : σ₁ σ₂) (BST_T_Q : ∀ (θ : Θ X), MeasureTheory.HasBoundedStrongType (fun (x1 : X) (x2 : X) => linearizedNontangentialOperator (⇑Q) θ K x1 x2) 2 2 MeasureTheory.volume MeasureTheory.volume (C_Ts a)) :
                ∫⁻ (x : X) in G, T_lin Q σ₁ σ₂ f x‖ₑ (C3_0_4 a q) * MeasureTheory.volume G ^ (↑q')⁻¹ * MeasureTheory.volume F ^ (↑q)⁻¹

                Lemma 3.0.4.

                theorem S_truncation {X : Type u_1} {a : } [MetricSpace X] {q q' : NNReal} {F G : Set X} {K : XX} [KernelProofData a K] {Q : MeasureTheory.SimpleFunc X (Θ X)} {f : X} [IsCancellative X (defaultτ a)] {B : } (hq : q Set.Ioc 1 2) (hqq' : q.HolderConjugate q') (bF : Bornology.IsBounded F) (bG : Bornology.IsBounded G) (mF : MeasurableSet F) (mG : MeasurableSet G) (mf : Measurable f) (nf : (fun (x : X) => f x) F.indicator 1) (BST_T_Q : ∀ (θ : Θ X), MeasureTheory.HasBoundedStrongType (fun (x1 : X) (x2 : X) => linearizedNontangentialOperator (⇑Q) θ K x1 x2) 2 2 MeasureTheory.volume MeasureTheory.volume (C_Ts a)) :
                ∫⁻ (x : X) in G, s₁Finset.Icc (-B) B, s₂Finset.Icc s₁ B, T_S Q s₁ s₂ f x‖ₑ (C3_0_4 a q) * MeasureTheory.volume G ^ (↑q')⁻¹ * MeasureTheory.volume F ^ (↑q)⁻¹

                Lemma 3.0.3. B is the blueprint's S.

                def L302 (a : ) (R₁ : ) :

                The largest integer s₁ satisfying D ^ (-(s₁ - 2)) * R₁ > 1 / 2.

                Equations
                Instances For
                  def U302 (a : ) (R₂ : ) :

                  The smallest integer s₂ satisfying D ^ (-(s₂ + 2)) * R₂ < 1 / (4 * D).

                  Equations
                  Instances For
                    theorem R₁_le_D_zpow_div_four {X : Type u_1} {a : } [MetricSpace X] {K : XX} [KernelProofData a K] {R₁ : } :
                    R₁ (defaultD a) ^ (L302 a R₁ - 1) / 4
                    theorem D_zpow_div_two_le_R₂ {X : Type u_1} {a : } [MetricSpace X] {K : XX} [KernelProofData a K] {R₂ : } (hR₂ : 0 < R₂) :
                    (defaultD a) ^ U302 a R₂ / 2 R₂
                    theorem monotoneOn_L302 {X : Type u_1} {a : } [MetricSpace X] {K : XX} [KernelProofData a K] :
                    MonotoneOn (L302 a) {r : | 0 < r}
                    theorem monotoneOn_U302 {X : Type u_1} {a : } [MetricSpace X] {K : XX} [KernelProofData a K] :
                    MonotoneOn (U302 a) {r : | 0 < r}
                    theorem exists_uniform_annulus_bound {X : Type u_1} {a : } [MetricSpace X] {K : XX} [KernelProofData a K] {R : } (hR : 0 < R) :
                    ∃ (B : ), R₁Set.Ioo R⁻¹ R, R₂Set.Ioo R₁ R, L302 a R₁ Finset.Icc (-B) B U302 a R₂ Finset.Icc (-B) B

                    There exists a uniform bound for all possible values of L302 and U302 over the annulus in R_truncation.

                    theorem enorm_setIntegral_annulus_le {X : Type u_1} {a : } [MetricSpace X] {F : Set X} {K : XX} [KernelProofData a K] {Q : MeasureTheory.SimpleFunc X (Θ X)} {f : X} {x : X} {R₁ R₂ : } {s : } (nf : (fun (x : X) => f x) F.indicator 1) :
                    (y : X) in Set.Annulus.oo x R₁ R₂, Ks s x y * f y * Complex.exp (Complex.I * ((Q x) y))‖ₑ (C2_1_3 a) * globalMaximalFunction MeasureTheory.volume 1 (F.indicator 1) x
                    def edgeScales (a : ) (R₁ R₂ : ) :

                    The fringes of the scale interval in Lemma 3.0.2's proof that require separate handling.

                    Equations
                    Instances For
                      theorem diff_subset_edgeScales {a : } {R₁ R₂ : } :
                      Finset.Icc (L302 a R₁ - 2) (U302 a R₂ + 2) \ Finset.Icc (L302 a R₁) (U302 a R₂) edgeScales a R₁ R₂
                      theorem enorm_carlesonOperatorIntegrand_le_T_S {X : Type u_1} {a : } [MetricSpace X] {F : Set X} {K : XX} [KernelProofData a K] {Q : MeasureTheory.SimpleFunc X (Θ X)} {f : X} {R₁ R₂ : } (hR₁ : 0 < R₁) (hR₂ : R₁ < R₂) (mf : Measurable f) (nf : (fun (x : X) => f x) F.indicator 1) {x : X} :
                      theorem lintegral_globalMaximalFunction_le {X : Type u_1} {a : } [MetricSpace X] {q q' : NNReal} {F G : Set X} {K : XX} [KernelProofData a K] (hq : q Set.Ioc 1 2) (hqq' : q.HolderConjugate q') (bF : Bornology.IsBounded F) (mF : MeasurableSet F) (mG : MeasurableSet G) :
                      def T_R {X : Type u_1} {a : } [MetricSpace X] {K : XX} [KernelProofData a K] :
                      (XX)(Q : MeasureTheory.SimpleFunc X (Θ X)) → (R₁ R₂ R : ) → (f : X) → (x : X) →

                      The operator T_{R₁, R₂, R} introduced in Lemma 3.0.2.

                      Equations
                      Instances For
                        theorem C1_0_2_pos {a : } {q : NNReal} (hq : 1 < q) :
                        0 < C1_0_2 a q
                        theorem le_C1_0_2 {a : } {q : NNReal} (a4 : 4 a) (hq : q Set.Ioc 1 2) :
                        C3_0_4 a q + 4 * C2_1_3 a * C2_0_6' (↑(defaultA a)) 1 q C1_0_2 a q
                        theorem R_truncation' {X : Type u_1} {a : } [MetricSpace X] {q q' : NNReal} {F G : Set X} {K : XX} [KernelProofData a K] {Q : MeasureTheory.SimpleFunc X (Θ X)} {f : X} [IsCancellative X (defaultτ a)] (hq : q Set.Ioc 1 2) (hqq' : q.HolderConjugate q') (mF : MeasurableSet F) (mG : MeasurableSet G) (mf : Measurable f) (nf : (fun (x : X) => f x) F.indicator 1) {n : } {R : } (hR : R = 2 ^ n) (sF : F Metric.ball (cancelPt X) (2 * R)) (sG : G Metric.ball (cancelPt X) R) (BST_T_Q : ∀ (θ : Θ X), MeasureTheory.HasBoundedStrongType (fun (x1 : X) (x2 : X) => linearizedNontangentialOperator (⇑Q) θ K x1 x2) 2 2 MeasureTheory.volume MeasureTheory.volume (C_Ts a)) :
                        ∫⁻ (x : X) in G, R₁Set.Ioo R⁻¹ R, R₂Set.Ioo R₁ R, T_R K Q R₁ R₂ R f x‖ₑ (C1_0_2 a q) * MeasureTheory.volume G ^ (↑q')⁻¹ * MeasureTheory.volume F ^ (↑q)⁻¹
                        theorem R_truncation {X : Type u_1} {a : } [MetricSpace X] {q q' : NNReal} {F G : Set X} {K : XX} [KernelProofData a K] {Q : MeasureTheory.SimpleFunc X (Θ X)} {f : X} [IsCancellative X (defaultτ a)] (hq : q Set.Ioc 1 2) (hqq' : q.HolderConjugate q') (mF : MeasurableSet F) (mG : MeasurableSet G) (mf : Measurable f) (nf : (fun (x : X) => f x) F.indicator 1) {n : } {R : } (hR : R = 2 ^ n) (BST_T_Q : ∀ (θ : Θ X), MeasureTheory.HasBoundedStrongType (fun (x1 : X) (x2 : X) => linearizedNontangentialOperator (⇑Q) θ K x1 x2) 2 2 MeasureTheory.volume MeasureTheory.volume (C_Ts a)) :
                        ∫⁻ (x : X) in G, R₁Set.Ioo R⁻¹ R, R₂Set.Ioo R₁ R, T_R K Q R₁ R₂ R f x‖ₑ (C1_0_2 a q) * MeasureTheory.volume G ^ (↑q')⁻¹ * MeasureTheory.volume F ^ (↑q)⁻¹

                        Lemma 3.0.2.