Documentation

Carleson.FinitaryCarleson

theorem integrable_tile_sum_operator {X : Type u_1} {a : } {q : } {K : XX} {σ₁ : X} {σ₂ : X} {F : Set X} {G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] {f : X} (hf : Measurable f) (h2f : ∀ (x : X), f x F.indicator 1 x) {x : X} {s : } :
MeasureTheory.Integrable (fun (y : X) => Ks s x y * f y * Complex.exp (Complex.I * (((Q x) y) - ((Q x) x)))) MeasureTheory.volume
theorem exists_Grid {X : Type u_1} {a : } {q : } {K : XX} {σ₁ : X} {σ₂ : X} {F : Set X} {G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {x : X} (hx : x G) {s : } (hs : s (Set.Icc (σ₁ x) (σ₂ x)).toFinset) :
∃ (I : GridStructure.Grid X (defaultA a)), GridStructure.s I = s x I
theorem tile_sum_operator {X : Type u_1} {a : } {q : } {K : XX} {σ₁ : X} {σ₂ : X} {F : Set X} {G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {G' : Set X} {f : X} {x : X} (hx : x G \ G') :
p : 𝔓 X, carlesonOn p f x = s(Set.Icc (σ₁ x) (σ₂ x)).toFinset, ∫ (y : X), Ks s x y * f y * Complex.exp (Complex.I * (((Q x) y) - ((Q x) x)))

Lemma 4.0.3

def C2_0_1 (a : ) (q : NNReal) :
Equations
Instances For
    theorem C2_0_1_pos {X : Type u_1} {a : } {q : } {K : XX} {σ₁ : X} {σ₂ : X} {F : Set X} {G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] :
    C2_0_1 (↑a) (nnq X) > 0
    theorem finitary_carleson (X : Type u_1) {a : } {q : } {K : XX} {σ₁ : X} {σ₂ : X} {F : Set X} {G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] :
    ∃ (G' : Set X), MeasurableSet G' 2 * MeasureTheory.volume G' MeasureTheory.volume G ∀ (f : X), Measurable f(∀ (x : X), f x F.indicator 1 x)∫⁻ (x : X) in G \ G', s(Set.Icc (σ₁ x) (σ₂ x)).toFinset, ∫ (y : X), Ks s x y * f y * Complex.exp (Complex.I * ((Q x) y))‖₊ (C2_0_1 (↑a) (nnq X)) * MeasureTheory.volume G ^ (1 - q⁻¹) * MeasureTheory.volume F ^ q⁻¹