theorem
ball_bound
{X : Type u_1}
{a : β}
{q : β}
{K : X β X β β}
{Οβ Οβ : X β β€}
{F G : Set X}
[PseudoMetricSpace X]
[ProofData a q K Οβ Οβ F G]
{Y : Set X}
(k : β€)
(hk_lower : -β(defaultS X) β€ k)
(hY : Y β Metric.ball (cancelPt X) (4 * β(defaultD a) ^ β(defaultS X) - β(defaultD a) ^ k))
(y : X)
(hy : y β Y)
:
theorem
counting_balls
{X : Type u_1}
{a : β}
{q : β}
{K : X β X β β}
{Οβ Οβ : X β β€}
{F G : Set X}
[PseudoMetricSpace X]
[ProofData a q K Οβ Οβ F G]
{k : β€}
(hk_lower : -β(defaultS X) β€ k)
{Y : Set X}
(hY : Y β Metric.ball (cancelPt X) (4 * β(defaultD a) ^ defaultS X - β(defaultD a) ^ k))
(hYdisjoint : Y.PairwiseDisjoint fun (y : X) => Metric.ball y (β(defaultD a) ^ k))
:
theorem
chain_property_set_has_bound
(X : Type u_1)
{a : β}
{q : β}
{K : X β X β β}
{Οβ Οβ : X β β€}
{F G : Set X}
[PseudoMetricSpace X]
[ProofData a q K Οβ Οβ F G]
(k : β€)
(c : Set (Set X))
:
c β property_set X k β IsChain (fun (x1 x2 : Set X) => x1 β x2) c β β ub β property_set X k, β s β c, s β ub
def
zorn_apply_maximal_set
(X : Type u_1)
{a : β}
{q : β}
{K : X β X β β}
{Οβ Οβ : X β β€}
{F G : Set X}
[PseudoMetricSpace X]
[ProofData a q K Οβ Οβ F G]
(k : β€)
:
β s β property_set X k, β s' β property_set X k, s β s' β s' = s
Equations
- β― = β―
Instances For
theorem
Yk_pairwise
{X : Type u_1}
{a : β}
{q : β}
{K : X β X β β}
{Οβ Οβ : X β β€}
{F G : Set X}
[PseudoMetricSpace X]
[ProofData a q K Οβ Οβ F G]
(k : β€)
:
(Yk X k).PairwiseDisjoint fun (y : X) => Metric.ball y (β(defaultD a) ^ k)
theorem
Yk_maximal
{X : Type u_1}
{a : β}
{q : β}
{K : X β X β β}
{Οβ Οβ : X β β€}
{F G : Set X}
[PseudoMetricSpace X]
[ProofData a q K Οβ Οβ F G]
(k : β€)
{s : Set X}
(hs_sub : s β Metric.ball (cancelPt X) (4 * β(defaultD a) ^ defaultS X - β(defaultD a) ^ k))
(hs_pairwise : s.PairwiseDisjoint fun (y : X) => Metric.ball y (β(defaultD a) ^ k))
(hmax_sub : Yk X k β s)
(hk_s : k = β(defaultS X) β cancelPt X β s)
:
theorem
cover_big_ball
{X : Type u_1}
{a : β}
{q : β}
{K : X β X β β}
{Οβ Οβ : X β β€}
{F G : Set X}
[PseudoMetricSpace X]
[ProofData a q K Οβ Οβ F G]
(k : β€)
:
def
Yk_encodable
(X : Type u_1)
{a : β}
{q : β}
{K : X β X β β}
{Οβ Οβ : X β β€}
{F G : Set X}
[PseudoMetricSpace X]
[ProofData a q K Οβ Οβ F G]
(k : β€)
:
Equations
- Yk_encodable X k = β―.toEncodable
Instances For
Equations
- i.linearOrder = LinearOrder.lift' Encodable.encode β―
Instances For
instance
instLinearOrderElemYk
{X : Type u_1}
{a : β}
{q : β}
{K : X β X β β}
{Οβ Οβ : X β β€}
{F G : Set X}
[PseudoMetricSpace X]
[ProofData a q K Οβ Οβ F G]
{k : β€}
:
LinearOrder β(Yk X k)
Equations
- instLinearOrderElemYk = (Yk_encodable X k).linearOrder
instance
instWellFoundedLTElemYk
{X : Type u_1}
{a : β}
{q : β}
{K : X β X β β}
{Οβ Οβ : X β β€}
{F G : Set X}
[PseudoMetricSpace X]
[ProofData a q K Οβ Οβ F G]
{k : β€}
:
WellFoundedLT β(Yk X k)
Equations
- β― = β―
@[irreducible]
def
I1
{X : Type u_1}
{a : β}
{q : β}
{K : X β X β β}
{Οβ Οβ : X β β€}
{F G : Set X}
[PseudoMetricSpace X]
[ProofData a q K Οβ Οβ F G]
{k : β€}
(hk : -β(defaultS X) β€ k)
(y : β(Yk X k))
:
Set X
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[irreducible]
def
I2
{X : Type u_1}
{a : β}
{q : β}
{K : X β X β β}
{Οβ Οβ : X β β€}
{F G : Set X}
[PseudoMetricSpace X]
[ProofData a q K Οβ Οβ F G]
{k : β€}
(hk : -β(defaultS X) β€ k)
(y : β(Yk X k))
:
Set X
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[irreducible]
@[irreducible]
@[irreducible]
@[irreducible]
theorem
dyadic_property
{X : Type u_1}
{a : β}
{q : β}
{K : X β X β β}
{Οβ Οβ : X β β€}
{F G : Set X}
[PseudoMetricSpace X]
[ProofData a q K Οβ Οβ F G]
{l : β€}
(hl : -β(defaultS X) β€ l)
{k : β€}
(hl_k : l β€ k)
(hk : -β(defaultS X) β€ k)
(y : β(Yk X k))
(y' : β(Yk X l))
:
structure
ClosenessProperty
{X : Type u_1}
{a : β}
{q : β}
{K : X β X β β}
{Οβ Οβ : X β β€}
{F G : Set X}
[PseudoMetricSpace X]
[ProofData a q K Οβ Οβ F G]
{k1 k2 : β€}
(hk1 : -β(defaultS X) β€ k1)
(hk2 : -β(defaultS X) β€ k2)
(y1 : β(Yk X k1))
(y2 : β(Yk X k2))
:
Instances For
theorem
transitive_boundary'
{X : Type u_1}
{a : β}
{q : β}
{K : X β X β β}
{Οβ Οβ : X β β€}
{F G : Set X}
[PseudoMetricSpace X]
[ProofData a q K Οβ Οβ F G]
{k1 k2 k3 : β€}
(hk1 : -β(defaultS X) β€ k1)
(hk2 : -β(defaultS X) β€ k2)
(hk3 : -β(defaultS X) β€ k3)
(hk1_2 : k1 < k2)
(hk2_3 : k2 β€ k3)
(y1 : β(Yk X k1))
(y2 : β(Yk X k2))
(y3 : β(Yk X k3))
(x : X)
(hx : x β I3 hk1 y1 β© I3 hk2 y2 β© I3 hk3 y3)
:
ClosenessProperty hk1 hk3 y1 y3 β ClosenessProperty hk1 hk2 y1 y2 β§ ClosenessProperty hk2 hk3 y2 y3
theorem
transitive_boundary
{X : Type u_1}
{a : β}
{q : β}
{K : X β X β β}
{Οβ Οβ : X β β€}
{F G : Set X}
[PseudoMetricSpace X]
[ProofData a q K Οβ Οβ F G]
{k1 k2 k3 : β€}
(hk1 : -β(defaultS X) β€ k1)
(hk2 : -β(defaultS X) β€ k2)
(hk3 : -β(defaultS X) β€ k3)
(hk1_2 : k1 β€ k2)
(hk2_3 : k2 β€ k3)
(y1 : β(Yk X k1))
(y2 : β(Yk X k2))
(y3 : β(Yk X k3))
(x : X)
(hx : x β I3 hk1 y1 β© I3 hk2 y2 β© I3 hk3 y3)
:
ClosenessProperty hk1 hk3 y1 y3 β ClosenessProperty hk1 hk2 y1 y2 β§ ClosenessProperty hk2 hk3 y2 y3
Equations
- ShortVariables.termK' = Lean.ParserDescr.node `ShortVariables.termK' 1024 (Lean.ParserDescr.symbol "K'")
Instances For
theorem
boundary_sum_eq
{X : Type u_1}
{a : β}
{q : β}
{K : X β X β β}
{Οβ Οβ : X β β€}
{F G : Set X}
[PseudoMetricSpace X]
[ProofData a q K Οβ Οβ F G]
{k : β€}
(hk : -β(defaultS X) β€ k)
{k' : β€}
(hk' : -β(defaultS X) β€ k')
(y : β(Yk X k))
:
β' (y' : β(Yk X k')), βαΆ (_ : ClosenessProperty hk' hk y' y), MeasureTheory.volume (I3 hk' y') = MeasureTheory.volume (β (y' : β(Yk X k')), β (_ : ClosenessProperty hk' hk y' y), I3 hk' y')
theorem
smaller_boundary
{X : Type u_1}
{a : β}
{q : β}
{K : X β X β β}
{Οβ Οβ : X β β€}
{F G : Set X}
[PseudoMetricSpace X]
[ProofData a q K Οβ Οβ F G]
(n : β)
{k : β€}
(hk : -β(defaultS X) β€ k)
(hk_mnK : -β(defaultS X) β€ k - βn * βconst_K)
(y : β(Yk X k))
:
theorem
boundary_measure
{X : Type u_1}
{a : β}
{q : β}
{K : X β X β β}
{Οβ Οβ : X β β€}
{F G : Set X}
[PseudoMetricSpace X]
[ProofData a q K Οβ Οβ F G]
{k : β€}
(hk : -β(defaultS X) β€ k)
(y : β(Yk X k))
{t : NNReal}
(ht : t β Set.Ioo 0 1)
(htD : β(defaultD a) ^ (-β(defaultS X)) β€ βt * β(defaultD a) ^ k)
:
theorem
boundary_measure'
{X : Type u_1}
{a : β}
{q : β}
{K : X β X β β}
{Οβ Οβ : X β β€}
{F G : Set X}
[PseudoMetricSpace X]
[ProofData a q K Οβ Οβ F G]
{k : β€}
(hk : -β(defaultS X) β€ k)
(y : β(Yk X k))
{t : NNReal}
(ht : t β Set.Ioo 0 1)
(htD : β(defaultD a) ^ (-β(defaultS X)) β€ βt * β(defaultD a) ^ k)
:
def
forget_map
(X : Type u_1)
{a : β}
{q : β}
{K : X β X β β}
{Οβ Οβ : X β β€}
{F G : Set X}
[PseudoMetricSpace X]
[ProofData a q K Οβ Οβ F G]
(x : π X)
:
Equations
- forget_map X x = β¨β¨x.k, β―β©, x.yβ©
Instances For
theorem
forget_map_inj
{X : Type u_1}
{a : β}
{q : β}
{K : X β X β β}
{Οβ Οβ : X β β€}
{F G : Set X}
[PseudoMetricSpace X]
[ProofData a q K Οβ Οβ F G]
:
def
grid_existence
(X : Type u_1)
{a : β}
{q : β}
{K : X β X β β}
{Οβ Οβ : X β β€}
{F G : Set X}
[PseudoMetricSpace X]
[ProofData a q K Οβ Οβ F G]
:
GridStructure X (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)
Proof that there exists a grid structure.
Equations
- One or more equations did not get rendered due to their size.
Instances For
Proof that there exists a tile structure on a grid structure. #
def
π©_cands
{X : Type u_1}
{a : β}
{q : β}
{K : X β X β β}
{Οβ Οβ : X β β€}
{F G : Set X}
[PseudoMetricSpace X]
[ProofData a q K Οβ Οβ F G]
[GridStructure X (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)]
(I : Grid X)
:
Equations
- π©_cands I = Finset.filter (fun (z : Finset (Ξ X)) => (βz).PairwiseDisjoint fun (x : Ξ X) => Metric.ball x Cπ©) Q.range.powerset
Instances For
theorem
exists_π©_max_card
{X : Type u_1}
{a : β}
{q : β}
{K : X β X β β}
{Οβ Οβ : X β β€}
{F G : Set X}
[PseudoMetricSpace X]
[ProofData a q K Οβ Οβ F G]
[GridStructure X (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)]
(I : Grid X)
:
β zmax β π©_cands I, β z β π©_cands I, z.card β€ zmax.card
def
π©
{X : Type u_1}
{a : β}
{q : β}
{K : X β X β β}
{Οβ Οβ : X β β€}
{F G : Set X}
[PseudoMetricSpace X]
[ProofData a q K Οβ Οβ F G]
[GridStructure X (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)]
(I : Grid X)
:
A finset of maximal cardinality satisfying (4.2.1) and (4.2.2).
Instances For
theorem
π©_pairwiseDisjoint
{X : Type u_1}
{a : β}
{q : β}
{K : X β X β β}
{Οβ Οβ : X β β€}
{F G : Set X}
[PseudoMetricSpace X]
[ProofData a q K Οβ Οβ F G]
[GridStructure X (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)]
{I : Grid X}
:
(β(π© I)).PairwiseDisjoint fun (x : Ξ X) => Metric.ball x Cπ©
theorem
π©_max_card
{X : Type u_1}
{a : β}
{q : β}
{K : X β X β β}
{Οβ Οβ : X β β€}
{F G : Set X}
[PseudoMetricSpace X]
[ProofData a q K Οβ Οβ F G]
[GridStructure X (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)]
{I : Grid X}
(z : Finset (Ξ X))
:
z β π©_cands I β z.card β€ (π© I).card
instance
instInhabitedSubtypeΞRealMemFinsetπ©
{X : Type u_1}
{a : β}
{q : β}
{K : X β X β β}
{Οβ Οβ : X β β€}
{F G : Set X}
[PseudoMetricSpace X]
[ProofData a q K Οβ Οβ F G]
[GridStructure X (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)]
{I : Grid X}
:
Equations
- instInhabitedSubtypeΞRealMemFinsetπ© = { default := β¨Exists.choose β―, β―β© }
theorem
frequency_ball_cover
{X : Type u_1}
{a : β}
{q : β}
{K : X β X β β}
{Οβ Οβ : X β β€}
{F G : Set X}
[PseudoMetricSpace X]
[ProofData a q K Οβ Οβ F G]
[GridStructure X (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)]
{I : Grid X}
:
βQ.range β β z β π© I, Metric.ball z C4_2_1
Equation (4.2.3), Lemma 4.2.1
def
tileData_existence
{X : Type u_1}
{a : β}
{q : β}
{K : X β X β β}
{Οβ Οβ : X β β€}
{F G : Set X}
[PseudoMetricSpace X]
[ProofData a q K Οβ Οβ F G]
[GridStructure X (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)]
:
PreTileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[irreducible]
def
Construction.Ξ©β_aux
{X : Type u_1}
{a : β}
{q : β}
{K : X β X β β}
{Οβ Οβ : X β β€}
{F G : Set X}
[PseudoMetricSpace X]
[ProofData a q K Οβ Οβ F G]
[GridStructure X (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)]
(I : Grid X)
(k : β)
:
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
Construction.Ξ©β_aux_disjoint
{X : Type u_1}
{a : β}
{q : β}
{K : X β X β β}
{Οβ Οβ : X β β€}
{F G : Set X}
[PseudoMetricSpace X]
[ProofData a q K Οβ Οβ F G]
[GridStructure X (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)]
(I : Grid X)
{k l : β}
(hn : k β l)
:
Disjoint (Construction.Ξ©β_aux I k) (Construction.Ξ©β_aux I l)
theorem
Construction.disjoint_ball_Ξ©β_aux
{X : Type u_1}
{a : β}
{q : β}
{K : X β X β β}
{Οβ Οβ : X β β€}
{F G : Set X}
[PseudoMetricSpace X]
[ProofData a q K Οβ Οβ F G]
[GridStructure X (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)]
(I : Grid X)
{z z' : Ξ X}
(hz : z β π© I)
(hz' : z' β π© I)
(hn : z β z')
:
Disjoint (Metric.ball z' Cπ©) (Construction.Ξ©β_aux I β((Finite.equivFin { x : Ξ X // x β π© I }) β¨z, hzβ©))
def
Construction.Ξ©β
{X : Type u_1}
{a : β}
{q : β}
{K : X β X β β}
{Οβ Οβ : X β β€}
{F G : Set X}
[PseudoMetricSpace X]
[ProofData a q K Οβ Οβ F G]
[GridStructure X (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)]
(p : π X)
:
Equations
- Construction.Ξ©β p = Construction.Ξ©β_aux p.fst β((Finite.equivFin { x : Ξ X // x β π© p.fst }) p.snd)
Instances For
theorem
Construction.disjoint_frequency_cubes
{X : Type u_1}
{a : β}
{q : β}
{K : X β X β β}
{Οβ Οβ : X β β€}
{F G : Set X}
[PseudoMetricSpace X]
[ProofData a q K Οβ Οβ F G]
[GridStructure X (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)]
{I : Grid X}
{f g : { x : Ξ X // x β π© I }}
(h : (Construction.Ξ©β β¨I, fβ© β© Construction.Ξ©β β¨I, gβ©).Nonempty)
:
f = g
Lemma 4.2.2
theorem
Construction.ball_subset_Ξ©β
{X : Type u_1}
{a : β}
{q : β}
{K : X β X β β}
{Οβ Οβ : X β β€}
{F G : Set X}
[PseudoMetricSpace X]
[ProofData a q K Οβ Οβ F G]
[GridStructure X (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)]
(p : π X)
:
Equation (4.2.6), first inclusion
theorem
Construction.Ξ©β_subset_ball
{X : Type u_1}
{a : β}
{q : β}
{K : X β X β β}
{Οβ Οβ : X β β€}
{F G : Set X}
[PseudoMetricSpace X]
[ProofData a q K Οβ Οβ F G]
[GridStructure X (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)]
(p : π X)
:
Equation (4.2.6), second inclusion
theorem
Construction.iUnion_ball_subset_iUnion_Ξ©β
{X : Type u_1}
{a : β}
{q : β}
{K : X β X β β}
{Οβ Οβ : X β β€}
{F G : Set X}
[PseudoMetricSpace X]
[ProofData a q K Οβ Οβ F G]
[GridStructure X (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)]
{I : Grid X}
:
β z β π© I, Metric.ball z C4_2_1 β β (f : { x : Ξ X // x β π© I }), Construction.Ξ©β β¨I, fβ©
Equation (4.2.5)
@[irreducible]
def
Construction.Ξ©
{X : Type u_1}
{a : β}
{q : β}
{K : X β X β β}
{Οβ Οβ : X β β€}
{F G : Set X}
[PseudoMetricSpace X]
[ProofData a q K Οβ Οβ F G]
[GridStructure X (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)]
(p : π X)
:
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[irreducible]
theorem
Construction.π_induction
{X : Type u_1}
{a : β}
{q : β}
{K : X β X β β}
{Οβ Οβ : X β β€}
{F G : Set X}
[PseudoMetricSpace X]
[ProofData a q K Οβ Οβ F G]
[GridStructure X (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)]
(P : π X β Prop)
(base : β (p : π X), IsMax p.fst β P p)
(ind : β (p : π X), Β¬IsMax p.fst β (β (z : { x : Ξ X // x β π© p.fst.succ }), P β¨p.fst.succ, zβ©) β P p)
(p : π X)
:
P p
theorem
Construction.Ξ©_subset_cball
{X : Type u_1}
{a : β}
{q : β}
{K : X β X β β}
{Οβ Οβ : X β β€}
{F G : Set X}
[PseudoMetricSpace X]
[ProofData a q K Οβ Οβ F G]
[GridStructure X (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)]
{p : π X}
:
Construction.Ξ© p β Metric.ball (π¬ p) 1
theorem
Construction.Ξ©_disjoint_aux
{X : Type u_1}
{a : β}
{q : β}
{K : X β X β β}
{Οβ Οβ : X β β€}
{F G : Set X}
[PseudoMetricSpace X]
[ProofData a q K Οβ Οβ F G]
[GridStructure X (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)]
{I : Grid X}
(nmaxI : Β¬IsMax I)
{y z : { x : Ξ X // x β π© I }}
(hn : y β z)
:
Disjoint (Metric.ball (βy) Construction.CΞ©)
(β (z' : Ξ X), β (x : z' β β(π© I.succ) β© Construction.Ξ©β β¨I, zβ©), Construction.Ξ© β¨I.succ, β¨z', β―β©β©)
theorem
Construction.Ξ©_disjoint
{X : Type u_1}
{a : β}
{q : β}
{K : X β X β β}
{Οβ Οβ : X β β€}
{F G : Set X}
[PseudoMetricSpace X]
[ProofData a q K Οβ Οβ F G]
[GridStructure X (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)]
{p p' : π X}
(hn : p β p')
(hπ : π p = π p')
:
Disjoint (Construction.Ξ© p) (Construction.Ξ© p')
theorem
Construction.Ξ©_biUnion
{X : Type u_1}
{a : β}
{q : β}
{K : X β X β β}
{Οβ Οβ : X β β€}
{F G : Set X}
[PseudoMetricSpace X]
[ProofData a q K Οβ Οβ F G]
[GridStructure X (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)]
{I : Grid X}
:
βQ.range β β p β π β»ΒΉ' {I}, Construction.Ξ© p
@[irreducible]
theorem
Construction.Ξ©_RFD
{X : Type u_1}
{a : β}
{q : β}
{K : X β X β β}
{Οβ Οβ : X β β€}
{F G : Set X}
[PseudoMetricSpace X]
[ProofData a q K Οβ Οβ F G]
[GridStructure X (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)]
{p qβ : π X}
(hπ : π p β€ π qβ)
:
Disjoint (Construction.Ξ© p) (Construction.Ξ© qβ) β¨ Construction.Ξ© qβ β Construction.Ξ© p
def
tile_existence
(X : Type u_1)
{a : β}
{q : β}
{K : X β X β β}
{Οβ Οβ : X β β€}
{F G : Set X}
[PseudoMetricSpace X]
[ProofData a q K Οβ Οβ F G]
[GridStructure X (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)]
:
TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)
Equations
- tile_existence X = TileStructure.mk Construction.Ξ© β― β― β― β― β―