This should roughly contain the contents of chapter 8.
theorem
cutoff_Lipschitz
{X : Type u_1}
[MetricSpace X]
{R t : ℝ}
{x : X}
(hR : 0 < R)
(ht : 0 < t)
:
theorem
cutoff_continuous
{X : Type u_1}
[MetricSpace X]
{R t : ℝ}
{x : X}
(hR : 0 < R)
(ht : 0 < t)
:
Continuous fun (y : X) => cutoff R t x y
theorem
cutoff_eq_zero
{X : Type u_1}
[MetricSpace X]
{R t : ℝ}
(hR : 0 < R)
(ht : 0 < t)
{x y : X}
(hy : y ∉ Metric.ball x (t * R))
:
theorem
hasCompactSupport_cutoff
{X : Type u_1}
[MetricSpace X]
{R t : ℝ}
[ProperSpace X]
(hR : 0 < R)
(ht : 0 < t)
{x : X}
:
HasCompactSupport fun (y : X) => cutoff R t x y
theorem
integrable_cutoff
{X : Type u_1}
{a : ℕ}
{q : ℝ}
{K : X → X → ℂ}
{σ₁ σ₂ : X → ℤ}
{F G : Set X}
[MetricSpace X]
[ProofData a q K σ₁ σ₂ F G]
{R t : ℝ}
(hR : 0 < R)
(ht : 0 < t)
{x : X}
:
MeasureTheory.Integrable (fun (y : X) => cutoff R t x y) MeasureTheory.volume
theorem
integrable_cutoff_mul
{X : Type u_1}
{a : ℕ}
{q : ℝ}
{K : X → X → ℂ}
{σ₁ σ₂ : X → ℤ}
{F G : Set X}
[MetricSpace X]
[ProofData a q K σ₁ σ₂ F G]
{R t : ℝ}
{z : X}
(hR : 0 < R)
(ht : 0 < t)
{x : X}
{φ : X → ℂ}
(hc : Continuous φ)
(hφ : Function.support φ ⊆ Metric.ball z R)
:
MeasureTheory.Integrable (fun (y : X) => ↑(cutoff R t x y) * φ y) MeasureTheory.volume
theorem
support_holderApprox_subset_aux
{X : Type u_1}
{a : ℕ}
{q : ℝ}
{K : X → X → ℂ}
{σ₁ σ₂ : X → ℤ}
{F G : Set X}
[MetricSpace X]
[ProofData a q K σ₁ σ₂ F G]
{z : X}
{R R' t : ℝ}
(hR : 0 < R)
{φ : X → ℂ}
(hφ : Function.support φ ⊆ Metric.ball z R')
(ht : t ∈ Set.Ioc 0 1)
:
theorem
support_holderApprox_subset
{X : Type u_1}
{a : ℕ}
{q : ℝ}
{K : X → X → ℂ}
{σ₁ σ₂ : X → ℤ}
{F G : Set X}
[MetricSpace X]
[ProofData a q K σ₁ σ₂ F G]
{z : X}
{R t : ℝ}
(hR : 0 < R)
{φ : X → ℂ}
(hφ : Function.support φ ⊆ Metric.ball z R)
(ht : t ∈ Set.Ioc 0 1)
:
Part of Lemma 8.0.1.
theorem
dist_holderApprox_le
{X : Type u_1}
{a : ℕ}
{q : ℝ}
{K : X → X → ℂ}
{σ₁ σ₂ : X → ℤ}
{F G : Set X}
[MetricSpace X]
[ProofData a q K σ₁ σ₂ F G]
{z : X}
{R t : ℝ}
(hR : 0 < R)
{C : NNReal}
(ht : 0 < t)
(h't : t ≤ 1)
{φ : X → ℂ}
(hφ : Function.support φ ⊆ Metric.ball z R)
(h2φ : HolderOnWith C (nnτ X) φ (Metric.ball z (2 * R)))
(x : X)
:
Part of Lemma 8.0.1: Equation (8.0.1).
Note that the norm ||φ||_C^τ is normalized by definition, i.e., on the ball B (z, 2 * R),
it is (2 * R) ^ τ times the best Hölder constant of φ, so the Lean statement corresponds to the
blueprint statement.
theorem
enorm_holderApprox_sub_le
{X : Type u_1}
{a : ℕ}
{q : ℝ}
{K : X → X → ℂ}
{σ₁ σ₂ : X → ℤ}
{F G : Set X}
[MetricSpace X]
[ProofData a q K σ₁ σ₂ F G]
{z : X}
{R t : ℝ}
(hR : 0 < R)
(ht : 0 < t)
(h't : t ≤ 1)
{φ : X → ℂ}
(hφ : Function.support φ ⊆ Metric.ball z R)
(x : X)
:
theorem
holderApprox_le
{X : Type u_1}
{a : ℕ}
{q : ℝ}
{K : X → X → ℂ}
{σ₁ σ₂ : X → ℤ}
{F G : Set X}
[MetricSpace X]
[ProofData a q K σ₁ σ₂ F G]
{R t : ℝ}
(hR : 0 < R)
{C : NNReal}
(ht : 0 < t)
{φ : X → ℂ}
(hC : ∀ (x : X), ‖φ x‖ ≤ ↑C)
(x : X)
:
Part of Lemma 8.0.1: sup norm control in Equation (8.0.2). Note that it only uses the sup
norm of φ, no need for a Hölder control.
theorem
norm_holderApprox_sub_le_aux
{X : Type u_1}
{a : ℕ}
{q : ℝ}
{K : X → X → ℂ}
{σ₁ σ₂ : X → ℤ}
{F G : Set X}
[MetricSpace X]
[ProofData a q K σ₁ σ₂ F G]
{z : X}
{R t : ℝ}
(hR : 0 < R)
(ht : 0 < t)
(h't : t ≤ 1)
{C : NNReal}
{φ : X → ℂ}
(hc : Continuous φ)
(hφ : Function.support φ ⊆ Metric.ball z R)
(hC : ∀ (x : X), ‖φ x‖ ≤ ↑C)
{x x' : X}
(h : dist x x' < R)
:
Auxiliary lemma: part of the Lipschitz control in Equation (8.0.2), when the distance between
the points is at most R.
theorem
norm_holderApprox_sub_le
{X : Type u_1}
{a : ℕ}
{q : ℝ}
{K : X → X → ℂ}
{σ₁ σ₂ : X → ℤ}
{F G : Set X}
[MetricSpace X]
[ProofData a q K σ₁ σ₂ F G]
{z : X}
{R t : ℝ}
(hR : 0 < R)
(ht : 0 < t)
(h't : t ≤ 1)
{C : NNReal}
{φ : X → ℂ}
(hc : Continuous φ)
(hφ : Function.support φ ⊆ Metric.ball z R)
(hC : ∀ (x : X), ‖φ x‖ ≤ ↑C)
{x x' : X}
:
Part of Lemma 8.0.1: Lipschitz norm control in Equation (8.0.2). Note that it only uses the sup
norm of φ, no need for a Hölder control.
theorem
lipschitzWith_holderApprox
{X : Type u_1}
{a : ℕ}
{q : ℝ}
{K : X → X → ℂ}
{σ₁ σ₂ : X → ℤ}
{F G : Set X}
[MetricSpace X]
[ProofData a q K σ₁ σ₂ F G]
{z : X}
{R t : ℝ}
(hR : 0 < R)
(ht : 0 < t)
(h't : t ≤ 1)
{C : NNReal}
{φ : X → ℂ}
(hc : Continuous φ)
(hφ : Function.support φ ⊆ Metric.ball z R)
(hC : ∀ (x : X), ‖φ x‖ ≤ ↑C)
:
theorem
iLipENorm_holderApprox'
{X : Type u_1}
{a : ℕ}
{q : ℝ}
{K : X → X → ℂ}
{σ₁ σ₂ : X → ℤ}
{F G : Set X}
[MetricSpace X]
[ProofData a q K σ₁ σ₂ F G]
{z : X}
{R t : ℝ}
(ht : 0 < t)
(h't : t ≤ 1)
{C : NNReal}
{φ : X → ℂ}
(hc : Continuous φ)
(hφ : Function.support φ ⊆ Metric.ball z R)
(hC : ∀ (x : X), ‖φ x‖ ≤ ↑C)
:
theorem
iLipENorm_holderApprox_le
{X : Type u_1}
{a : ℕ}
{q : ℝ}
{K : X → X → ℂ}
{σ₁ σ₂ : X → ℤ}
{F G : Set X}
[MetricSpace X]
[ProofData a q K σ₁ σ₂ F G]
{z : X}
{R t : ℝ}
(ht : 0 < t)
(h't : t ≤ 1)
{φ : X → ℂ}
(hφ : Function.support φ ⊆ Metric.ball z R)
:
theorem
holder_van_der_corput
{X : Type u_1}
{a : ℕ}
{q : ℝ}
{K : X → X → ℂ}
{σ₁ σ₂ : X → ℤ}
{F G : Set X}
[MetricSpace X]
[ProofData a q K σ₁ σ₂ F G]
{z : X}
{R : ℝ}
{φ : X → ℂ}
(φ_supp : Function.support φ ⊆ Metric.ball z R)
{f g : Θ X}
:
Proposition 2.0.5.