Documentation

Carleson.HolderVanDerCorput

This should roughly contain the contents of chapter 8.

def cutoff {X : Type u_1} [MetricSpace X] (R t : ) (x y : X) :

cutoff R t x y is L(x, y) in the proof of Lemma 8.0.1.

Equations
Instances For
    theorem cutoff_comm {X : Type u_1} [MetricSpace X] {R t : } {x y : X} :
    cutoff R t x y = cutoff R t y x
    theorem cutoff_Lipschitz {X : Type u_1} [MetricSpace X] {R t : } {x : X} (hR : 0 < R) (ht : 0 < t) :
    LipschitzWith 1 / (t * R), fun (y : X) => cutoff R t x y
    theorem cutoff_continuous {X : Type u_1} [MetricSpace X] {R t : } {x : X} (hR : 0 < R) (ht : 0 < t) :
    Continuous fun (y : X) => cutoff R t x y
    theorem cutoff_measurable {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] {R t : } {x : X} (hR : 0 < R) (ht : 0 < t) :
    Measurable fun (y : X) => cutoff R t x y

    cutoff R t x is measurable in y.

    theorem leq_of_max_neq_left {a b : } (h : a b a) :
    a < b
    theorem leq_of_max_neq_right {a b : } (h : a b b) :
    b < a
    theorem aux_8_0_4 {X : Type u_1} [MetricSpace X] {R t : } {x y : X} (hR : 0 < R) (ht : 0 < t) (h : cutoff R t x y 0) :
    y Metric.ball x (t * R)

    Equation 8.0.4 from the blueprint

    theorem aux_8_0_5 {X : Type u_1} [MetricSpace X] {R t : } {x y : X} (hR : 0 < R) (ht : 0 < t) (h : y Metric.ball x (2 ^ (-1) * t * R)) :
    2 ^ (-1) cutoff R t x y
    theorem aux_8_0_5'' {X : Type u_1} [MetricSpace X] {R t : } {x y : X} (hR : 0 < R) (ht : 0 < t) (h : y Metric.ball x (2 ^ (-1) * t * R)) :
    2 ^ (-1) (cutoff R t x y)
    theorem aux_8_0_6 {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] {R t : } {x : X} (hR : 0 < R) (ht : 0 < t) :
    2 ^ (-1) * MeasureTheory.volume (Metric.ball x (2 ^ (-1) * t * R)) ∫⁻ (y : X), (cutoff R t x y)
    def C8_0_1 (a : ) (t : NNReal) :

    The constant occurring in Lemma 8.0.1.

    Equations
    Instances For
      def holderApprox {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] (R t : ) (ϕ : X) (x : X) :

      ϕ ↦ \tilde{ϕ} in the proof of Lemma 8.0.1.

      Equations
      Instances For
        theorem foo {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] {φ : X} (hf : ∫ (x : X), φ x 0) :
        ∃ (z : X), φ z 0
        theorem support_holderApprox_subset {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] {z : X} {R t : } (hR : 0 < R) (ϕ : X) (hϕ : Function.support ϕ Metric.ball z R) (ht : t Set.Ioc 0 1) :

        Part of Lemma 8.0.1.

        theorem dist_holderApprox_le {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {z : X} {R t : } (hR : 0 < R) {C : NNReal} (ϕ : X) (hϕ : Function.support ϕ Metric.ball z R) (h2ϕ : HolderWith C (nnτ X) ϕ) (ht : t Set.Ioc 0 1) (x : X) :
        dist (ϕ x) (holderApprox R t ϕ x) t ^ defaultτ a * C

        Part of Lemma 8.0.1.

        theorem lipschitzWith_holderApprox {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {z : X} {R t : } (hR : 0 < R) {C : NNReal} (ϕ : X) (hϕ : Function.support ϕ Metric.ball z R) (h2ϕ : HolderWith C (nnτ X) ϕ) (ht : t Set.Ioc 0 1) :
        LipschitzWith (C8_0_1 a t, ) (holderApprox R t ϕ)

        Part of Lemma 8.0.1.

        def C2_0_5 (a : ) :

        The constant occurring in Proposition 2.0.5.

        Equations
        Instances For
          theorem holder_van_der_corput {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {z : X} {R : NNReal} (hR : 0 < R) {ϕ : X} (hϕ : Function.support ϕ Metric.ball z R) (h2ϕ : hnorm ϕ z R < ) {f g : Θ X} :
          ∫ (x : X), Complex.exp (Complex.I * ((f x) - (g x))) * ϕ x‖₊ (C2_0_5 a) * MeasureTheory.volume (Metric.ball z R) * hnorm ϕ z R * (1 + (nndist f g)) ^ (2 * a ^ 2 + a ^ 3)⁻¹

          Proposition 2.0.5.