This should roughly contain the contents of chapter 8.
theorem
cutoff_Lipschitz
{X : Type u_1}
[MetricSpace X]
{R t : ℝ}
{x : X}
(hR : 0 < R)
(ht : 0 < t)
:
LipschitzWith ⟨1 / (t * R), ⋯⟩ fun (y : X) => cutoff R t x y
theorem
cutoff_continuous
{X : Type u_1}
[MetricSpace X]
{R t : ℝ}
{x : X}
(hR : 0 < R)
(ht : 0 < t)
:
Continuous fun (y : X) => cutoff R t x y
theorem
aux_8_0_5''
{X : Type u_1}
[MetricSpace X]
{R t : ℝ}
{x y : X}
(hR : 0 < R)
(ht : 0 < t)
(h : y ∈ Metric.ball x (2 ^ (-1) * t * R))
:
theorem
support_holderApprox_subset
{X : Type u_1}
{a : ℕ}
{q : ℝ}
{K : X → X → ℂ}
{σ₁ σ₂ : X → ℤ}
{F G : Set X}
[MetricSpace X]
[ProofData a q K σ₁ σ₂ F G]
{z : X}
{R t : ℝ}
(hR : 0 < R)
(ϕ : X → ℂ)
(hϕ : Function.support ϕ ⊆ Metric.ball z R)
(ht : t ∈ Set.Ioc 0 1)
:
Function.support (holderApprox R t ϕ) ⊆ Metric.ball z (2 * R)
Part of Lemma 8.0.1.
theorem
dist_holderApprox_le
{X : Type u_1}
{a : ℕ}
{q : ℝ}
{K : X → X → ℂ}
{σ₁ σ₂ : X → ℤ}
{F G : Set X}
[MetricSpace X]
[ProofData a q K σ₁ σ₂ F G]
[TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)]
{z : X}
{R t : ℝ}
(hR : 0 < R)
{C : NNReal}
(ϕ : X → ℂ)
(hϕ : Function.support ϕ ⊆ Metric.ball z R)
(h2ϕ : HolderWith C (nnτ X) ϕ)
(ht : t ∈ Set.Ioc 0 1)
(x : X)
:
Part of Lemma 8.0.1.
theorem
lipschitzWith_holderApprox
{X : Type u_1}
{a : ℕ}
{q : ℝ}
{K : X → X → ℂ}
{σ₁ σ₂ : X → ℤ}
{F G : Set X}
[MetricSpace X]
[ProofData a q K σ₁ σ₂ F G]
[TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)]
{z : X}
{R t : ℝ}
(hR : 0 < R)
{C : NNReal}
(ϕ : X → ℂ)
(hϕ : Function.support ϕ ⊆ Metric.ball z R)
(h2ϕ : HolderWith C (nnτ X) ϕ)
(ht : t ∈ Set.Ioc 0 1)
:
LipschitzWith (C8_0_1 ↑a ⟨t, ⋯⟩) (holderApprox R t ϕ)
Part of Lemma 8.0.1.
theorem
holder_van_der_corput
{X : Type u_1}
{a : ℕ}
{q : ℝ}
{K : X → X → ℂ}
{σ₁ σ₂ : X → ℤ}
{F G : Set X}
[MetricSpace X]
[ProofData a q K σ₁ σ₂ F G]
[TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)]
{z : X}
{R : NNReal}
(hR : 0 < R)
{ϕ : X → ℂ}
(hϕ : Function.support ϕ ⊆ Metric.ball z ↑R)
(h2ϕ : hnorm ϕ z R < ⊤)
{f g : Θ X}
:
Proposition 2.0.5.