Documentation

Carleson.HolderVanDerCorput

This should roughly contain the contents of chapter 8.

def cutoff {X : Type u_1} [MetricSpace X] (R t : ) (x y : X) :

cutoff R t x y is L(x, y) in the proof of Lemma 8.0.1.

Equations
theorem cutoff_nonneg {X : Type u_1} [MetricSpace X] {R t : } {x y : X} :
0 cutoff R t x y
theorem cutoff_comm {X : Type u_1} [MetricSpace X] {R t : } {x y : X} :
cutoff R t x y = cutoff R t y x
theorem cutoff_Lipschitz {X : Type u_1} [MetricSpace X] {R t : } {x : X} (hR : 0 < R) (ht : 0 < t) :
LipschitzWith 1 / (t * R), fun (y : X) => cutoff R t x y
theorem cutoff_continuous {X : Type u_1} [MetricSpace X] {R t : } {x : X} (hR : 0 < R) (ht : 0 < t) :
Continuous fun (y : X) => cutoff R t x y
theorem cutoff_measurable {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] {R t : } {x : X} (hR : 0 < R) (ht : 0 < t) :
Measurable fun (y : X) => cutoff R t x y

cutoff R t x is measurable in y.

theorem cutoff_eq_zero {X : Type u_1} [MetricSpace X] {R t : } (hR : 0 < R) (ht : 0 < t) {x y : X} (hy : yMetric.ball x (t * R)) :
cutoff R t x y = 0
theorem hasCompactSupport_cutoff {X : Type u_1} [MetricSpace X] {R t : } [ProperSpace X] (hR : 0 < R) (ht : 0 < t) {x : X} :
HasCompactSupport fun (y : X) => cutoff R t x y
theorem integrable_cutoff {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] {R t : } (hR : 0 < R) (ht : 0 < t) {x : X} :
theorem integrable_cutoff_mul {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] {R t : } {z : X} (hR : 0 < R) (ht : 0 < t) {x : X} {ϕ : X} (hc : Continuous ϕ) ( : Function.support ϕ Metric.ball z R) :
MeasureTheory.Integrable (fun (y : X) => (cutoff R t x y) * ϕ y) MeasureTheory.volume
theorem leq_of_max_neq_left {a b : } (h : a b a) :
a < b
theorem leq_of_max_neq_right {a b : } (h : a b b) :
b < a
theorem aux_8_0_4 {X : Type u_1} [MetricSpace X] {R t : } {x y : X} (hR : 0 < R) (ht : 0 < t) (h : cutoff R t x y 0) :
y Metric.ball x (t * R)

Equation 8.0.4 from the blueprint

theorem aux_8_0_5 {X : Type u_1} [MetricSpace X] {R t : } {x y : X} (hR : 0 < R) (ht : 0 < t) (h : y Metric.ball x (2⁻¹ * t * R)) :
2⁻¹ cutoff R t x y
theorem aux_8_0_6 {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] {R t : } {x : X} (hR : 0 < R) (ht : 0 < t) :
theorem integral_cutoff_pos {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] {x : X} {R t : } (hR : 0 < R) (ht : 0 < t) :
0 < (y : X), cutoff R t x y
def C8_0_1 (a : ) (t : NNReal) :

The constant occurring in Lemma 8.0.1.

Equations
def holderApprox {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] (R t : ) (ϕ : X) (x : X) :

ϕ ↦ \tilde{ϕ} in the proof of Lemma 8.0.1.

Equations
theorem integral_mul_holderApprox {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] {x : X} {R t : } (hR : 0 < R) (ht : 0 < t) (ϕ : X) :
( (y : X), cutoff R t x y) * holderApprox R t ϕ x = (y : X), (cutoff R t x y) * ϕ y
theorem foo {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] {φ : X} (hf : (x : X), φ x 0) :
∃ (z : X), φ z 0
theorem support_holderApprox_subset {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] {z : X} {R t : } (hR : 0 < R) (ϕ : X) ( : Function.support ϕ Metric.ball z R) (ht : t Set.Ioc 0 1) :

Part of Lemma 8.0.1.

theorem dist_holderApprox_le {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] {z : X} {R t : } (hR : 0 < R) {C : NNReal} (ht : 0 < t) (ϕ : X) ( : Function.support ϕ Metric.ball z R) (h2ϕ : HolderWith C (nnτ X) ϕ) ( : 0 < nnτ X) (x : X) :
dist (ϕ x) (holderApprox R t ϕ x) t ^ defaultτ a * (R ^ defaultτ a * C)

Part of Lemma 8.0.1: Equation (8.0.1). Note that the norm ||ϕ||_C^τ is normalized by definition, i.e., it is R ^ τ times the best Hölder constant of ϕ, so the Lean statement corresponds to the blueprint statement. We assume that ϕ is globally Hölder for simplicity, but this is equivalent to being Hölder on ball z R as ϕ is supported there.

theorem holderApprox_le {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] {R t : } (hR : 0 < R) {C : NNReal} (ht : 0 < t) {ϕ : X} (hC : ∀ (x : X), ϕ x C) (x : X) :
holderApprox R t ϕ x C

Part of Lemma 8.0.1: sup norm control in Equation (8.0.2). Note that it only uses the sup norm of ϕ, no need for a Hölder control.

theorem norm_holderApprox_sub_le_aux {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] {z : X} {R t : } (hR : 0 < R) (ht : 0 < t) (h't : t 1) {C : NNReal} {ϕ : X} (hc : Continuous ϕ) ( : Function.support ϕ Metric.ball z R) (hC : ∀ (x : X), ϕ x C) {x x' : X} (h : dist x x' < R) :
holderApprox R t ϕ x' - holderApprox R t ϕ x 2⁻¹ * 2 ^ (4 * a) * t ^ (-1 - a) * C * dist x x' / R

Auxiliary lemma: part of the Lipschitz control in Equation (8.0.2), when the distance between the points is at most R.

theorem norm_holderApprox_sub_le {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] {z : X} {R t : } (hR : 0 < R) (ht : 0 < t) (h't : t 1) {C : NNReal} {ϕ : X} (hc : Continuous ϕ) ( : Function.support ϕ Metric.ball z R) (hC : ∀ (x : X), ϕ x C) {x x' : X} :
holderApprox R t ϕ x - holderApprox R t ϕ x' 2⁻¹ * 2 ^ (4 * a) * t ^ (-1 - a) * C * dist x x' / R

Part of Lemma 8.0.1: Lipschitz norm control in Equation (8.0.2). Note that it only uses the sup norm of ϕ, no need for a Hölder control.

theorem iLipENorm_holderApprox' {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] {z : X} {R t : } (ht : 0 < t) (h't : t 1) {C : NNReal} {ϕ : X} (hc : Continuous ϕ) ( : Function.support ϕ Metric.ball z R) (hC : ∀ (x : X), ϕ x C) :
iLipENorm (holderApprox R t ϕ) z R 2 ^ (4 * a) * ENNReal.ofReal t ^ (-1 - a) * C
theorem iLipENorm_holderApprox {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] {z : X} {R t : } (ht : 0 < t) (h't : t 1) {ϕ : X} ( : tsupport ϕ Metric.ball z R) :
iLipENorm (holderApprox R t ϕ) z R 2 ^ (4 * a) * ENNReal.ofReal t ^ (-1 - a) * iHolENorm ϕ z R
def C2_0_5 (a : ) :

The constant occurring in Proposition 2.0.5.

Equations
theorem holder_van_der_corput {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] {z : X} {R : NNReal} (hR : 0 < R) {ϕ : X} ( : Function.support ϕ Metric.ball z R) (h2ϕ : iHolENorm ϕ z R < ) {f g : Θ X} :
(x : X), Complex.exp (Complex.I * ((f x) - (g x))) * ϕ x‖₊ (C2_0_5 a) * MeasureTheory.volume (Metric.ball z R) * iHolENorm ϕ z R * (1 + (nndist_{z ,R} f g)) ^ (2 * a ^ 2 + a ^ 3)⁻¹

Proposition 2.0.5.