Documentation

Carleson.HolderVanDerCorput

This should roughly contain the contents of chapter 8.

def cutoff {X : Type u_1} [MetricSpace X] (R t : ) (x y : X) :

cutoff R t x y is L(x, y) in the proof of Lemma 8.0.1.

Equations
Instances For
    theorem cutoff_nonneg {X : Type u_1} [MetricSpace X] {R t : } {x y : X} :
    0 cutoff R t x y
    theorem cutoff_comm {X : Type u_1} [MetricSpace X] {R t : } {x y : X} :
    cutoff R t x y = cutoff R t y x
    theorem cutoff_Lipschitz {X : Type u_1} [MetricSpace X] {R t : } {x : X} (hR : 0 < R) (ht : 0 < t) :
    LipschitzWith 1 / (t * R), fun (y : X) => cutoff R t x y
    theorem cutoff_continuous {X : Type u_1} [MetricSpace X] {R t : } {x : X} (hR : 0 < R) (ht : 0 < t) :
    Continuous fun (y : X) => cutoff R t x y
    theorem cutoff_measurable {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] {R t : } {x : X} (hR : 0 < R) (ht : 0 < t) :
    Measurable fun (y : X) => cutoff R t x y

    cutoff R t x is measurable in y.

    theorem cutoff_eq_zero {X : Type u_1} [MetricSpace X] {R t : } (hR : 0 < R) (ht : 0 < t) {x y : X} (hy : yMetric.ball x (t * R)) :
    cutoff R t x y = 0
    theorem hasCompactSupport_cutoff {X : Type u_1} [MetricSpace X] {R t : } [ProperSpace X] (hR : 0 < R) (ht : 0 < t) {x : X} :
    HasCompactSupport fun (y : X) => cutoff R t x y
    theorem integrable_cutoff {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] {R t : } (hR : 0 < R) (ht : 0 < t) {x : X} :
    theorem integrable_cutoff_mul {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] {R t : } {z : X} (hR : 0 < R) (ht : 0 < t) {x : X} {φ : X} (hc : Continuous φ) ( : Function.support φ Metric.ball z R) :
    MeasureTheory.Integrable (fun (y : X) => (cutoff R t x y) * φ y) MeasureTheory.volume
    theorem leq_of_max_neq_left {a b : } (h : max a b a) :
    a < b
    theorem leq_of_max_neq_right {a b : } (h : max a b b) :
    b < a
    theorem aux_8_0_4 {X : Type u_1} [MetricSpace X] {R t : } {x y : X} (hR : 0 < R) (ht : 0 < t) (h : cutoff R t x y 0) :
    y Metric.ball x (t * R)

    Equation 8.0.4 from the blueprint

    theorem aux_8_0_5 {X : Type u_1} [MetricSpace X] {R t : } {x y : X} (hR : 0 < R) (ht : 0 < t) (h : y Metric.ball x (2⁻¹ * t * R)) :
    2⁻¹ cutoff R t x y
    theorem aux_8_0_6 {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] {R t : } {x : X} (hR : 0 < R) (ht : 0 < t) :
    theorem integral_cutoff_pos {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] {x : X} {R t : } (hR : 0 < R) (ht : 0 < t) :
    0 < (y : X), cutoff R t x y
    def C8_0_1 (a : ) (t : NNReal) :

    The constant occurring in Lemma 8.0.1.

    Equations
    Instances For
      def holderApprox {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] (R t : ) (φ : X) (x : X) :

      φ ↦ \tilde{φ} in the proof of Lemma 8.0.1.

      Equations
      Instances For
        theorem integral_mul_holderApprox {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] {x : X} {R t : } (hR : 0 < R) (ht : 0 < t) (φ : X) :
        ( (y : X), cutoff R t x y) * holderApprox R t φ x = (y : X), (cutoff R t x y) * φ y
        theorem support_holderApprox_subset_aux {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] {z : X} {R R' t : } (hR : 0 < R) {φ : X} ( : Function.support φ Metric.ball z R') (ht : t Set.Ioc 0 1) :
        theorem support_holderApprox_subset {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] {z : X} {R t : } (hR : 0 < R) {φ : X} ( : Function.support φ Metric.ball z R) (ht : t Set.Ioc 0 1) :

        Part of Lemma 8.0.1.

        theorem dist_holderApprox_le {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] {z : X} {R t : } (hR : 0 < R) {C : NNReal} (ht : 0 < t) (h't : t 1) {φ : X} ( : Function.support φ Metric.ball z R) (h2φ : HolderOnWith C (nnτ X) φ (Metric.ball z (2 * R))) (x : X) :
        dist (φ x) (holderApprox R t φ x) (t / 2) ^ defaultτ a * ((2 * R) ^ defaultτ a * C)

        Part of Lemma 8.0.1: Equation (8.0.1). Note that the norm ||φ||_C^τ is normalized by definition, i.e., on the ball B (z, 2 * R), it is (2 * R) ^ τ times the best Hölder constant of φ, so the Lean statement corresponds to the blueprint statement.

        theorem enorm_holderApprox_sub_le {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] {z : X} {R t : } (hR : 0 < R) (ht : 0 < t) (h't : t 1) {φ : X} ( : Function.support φ Metric.ball z R) (x : X) :
        φ x - holderApprox R t φ x‖ₑ ENNReal.ofReal (t / 2) ^ defaultτ a * iHolENorm φ z (2 * R) (defaultτ a)
        theorem holderApprox_le {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] {R t : } (hR : 0 < R) {C : NNReal} (ht : 0 < t) {φ : X} (hC : ∀ (x : X), φ x C) (x : X) :
        holderApprox R t φ x C

        Part of Lemma 8.0.1: sup norm control in Equation (8.0.2). Note that it only uses the sup norm of φ, no need for a Hölder control.

        theorem norm_holderApprox_sub_le_aux {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] {z : X} {R t : } (hR : 0 < R) (ht : 0 < t) (h't : t 1) {C : NNReal} {φ : X} (hc : Continuous φ) ( : Function.support φ Metric.ball z R) (hC : ∀ (x : X), φ x C) {x x' : X} (h : dist x x' < R) :
        holderApprox R t φ x' - holderApprox R t φ x 2⁻¹ * 2 ^ (4 * a) * t ^ (-1 - a) * C * dist x x' / (2 * R)

        Auxiliary lemma: part of the Lipschitz control in Equation (8.0.2), when the distance between the points is at most R.

        theorem norm_holderApprox_sub_le {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] {z : X} {R t : } (hR : 0 < R) (ht : 0 < t) (h't : t 1) {C : NNReal} {φ : X} (hc : Continuous φ) ( : Function.support φ Metric.ball z R) (hC : ∀ (x : X), φ x C) {x x' : X} :
        holderApprox R t φ x - holderApprox R t φ x' 2⁻¹ * 2 ^ (4 * a) * t ^ (-1 - a) * C * dist x x' / (2 * R)

        Part of Lemma 8.0.1: Lipschitz norm control in Equation (8.0.2). Note that it only uses the sup norm of φ, no need for a Hölder control.

        theorem lipschitzWith_holderApprox {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] {z : X} {R t : } (hR : 0 < R) (ht : 0 < t) (h't : t 1) {C : NNReal} {φ : X} (hc : Continuous φ) ( : Function.support φ Metric.ball z R) (hC : ∀ (x : X), φ x C) :
        LipschitzWith (2⁻¹ * 2 ^ (4 * a) * t ^ (-1 - a) * C / (2 * R)).toNNReal (holderApprox R t φ)
        theorem iLipENorm_holderApprox' {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] {z : X} {R t : } (ht : 0 < t) (h't : t 1) {C : NNReal} {φ : X} (hc : Continuous φ) ( : Function.support φ Metric.ball z R) (hC : ∀ (x : X), φ x C) :
        iLipENorm (holderApprox R t φ) z (2 * R) 2 ^ (4 * a) * ENNReal.ofReal t ^ (-1 - a) * C
        theorem iLipENorm_holderApprox_le {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] {z : X} {R t : } (ht : 0 < t) (h't : t 1) {φ : X} ( : Function.support φ Metric.ball z R) :
        iLipENorm (holderApprox R t φ) z (2 * R) 2 ^ (4 * a) * ENNReal.ofReal t ^ (-1 - a) * iHolENorm φ z (2 * R) (defaultτ a)
        def C2_0_5 (a : ) :

        The constant occurring in Proposition 2.0.5. Has value 2 ^ (7 * a) in the blueprint.

        Equations
        Instances For
          theorem holder_van_der_corput {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] {z : X} {R : } {φ : X} (φ_supp : Function.support φ Metric.ball z R) {f g : Θ X} :
          (x : X), Complex.exp (Complex.I * ((f x) - (g x))) * φ x‖ₑ (C2_0_5 a) * MeasureTheory.volume (Metric.ball z R) * iHolENorm φ z (2 * R) (defaultτ a) * (1 + edist_{z, R} f g) ^ (-(2 * a ^ 2 + a ^ 3)⁻¹)

          Proposition 2.0.5.