Documentation

Carleson.Classical.HilbertStrongType

def modulationOperator (n : ) (g : ) (x : ) :

The modulation operator M_n g, defined in (11.3.1)

Equations
Instances For
    def approxHilbertTransform (n : ) (g : ) (x : ) :

    The approximate Hilbert transform L_N g, defined in (11.3.2). defined slightly differently.

    Equations
    Instances For
      def niceKernel (r x : ) :

      The kernel k_r(x) defined in (11.3.11). When used, we may assume that r ∈ Ioo 0 1. Todo: find better name?

      Equations
      Instances For
        theorem mean_zero_oscillation {n : } (hn : n 0) :
        ∫ (x : ) in 0 ..2 * Real.pi, Complex.exp (Complex.I * n * x) = 0

        Lemma 11.1.8

        Lemma 11.5.1 Note: might not be used if we can use spectral_projection_bound_lp below.

        theorem partial_sum_selfadjoint {f g : } {n : } (hmf : Measurable f) (hf : MeasureTheory.eLpNorm f MeasureTheory.volume < ) (periodic_f : Function.Periodic f (2 * Real.pi)) (hmg : Measurable g) (hg : MeasureTheory.eLpNorm g MeasureTheory.volume < ) (periodic_g : Function.Periodic g (2 * Real.pi)) :
        ∫ (x : ) in 0 ..2 * Real.pi, (starRingEnd ) (partialFourierSum n f x) * g x = ∫ (x : ) in 0 ..2 * Real.pi, (starRingEnd ) (f x) * partialFourierSum n g x

        Lemma 11.5.2. Note: might not be used if we can use spectral_projection_bound_lp below.

        Lemma 11.1.11. The blueprint states this on [-π, π], but I think we can consistently change this to (0, 2π].

        Lemma 11.3.1. The blueprint states this on [-π, π], but I think we can consistently change this to (0, 2π].

        theorem young_convolution {f g : } {n : } (hmf : Measurable f) (hf : MeasureTheory.eLpNorm f MeasureTheory.volume < ) (periodic_f : Function.Periodic f (2 * Real.pi)) (hmg : Measurable g) (hg : MeasureTheory.eLpNorm g MeasureTheory.volume < ) (periodic_g : Function.Periodic g (2 * Real.pi)) :
        MeasureTheory.eLpNorm ((Set.Ioc 0 (2 * Real.pi)).indicator fun (x : ) => ∫ (y : ) in 0 ..2 * Real.pi, f y * g (x - y)) 2 MeasureTheory.volume MeasureTheory.eLpNorm ((Set.Ioc 0 (2 * Real.pi)).indicator f) 2 MeasureTheory.volume * MeasureTheory.eLpNorm ((Set.Ioc 0 (2 * Real.pi)).indicator g) 1 MeasureTheory.volume

        Lemma 11.3.3. The blueprint states this on [-π, π], but I think we can consistently change this to (0, 2π].

        Bonus points if you generalize to https://en.wikipedia.org/wiki/Young%27s_convolution_inequality first, using MeasureTheory.convolution from Mathlib. To applying the general version, you have to apply it with functions with AddCircle as domain.

        theorem integrable_bump_convolution {f g : } {n : } (hmf : Measurable f) (hf : MeasureTheory.eLpNorm f MeasureTheory.volume < ) (periodic_f : Function.Periodic f (2 * Real.pi)) (hmg : Measurable g) (hg : MeasureTheory.eLpNorm g MeasureTheory.volume < ) (periodic_g : Function.Periodic g (2 * Real.pi)) {r : } (hr : r Set.Ioo 0 Real.pi) :
        (∀ (x : ), g x niceKernel r x)MeasureTheory.eLpNorm ((Set.Ioc 0 (2 * Real.pi)).indicator fun (x : ) => ∫ (y : ) in 0 ..2 * Real.pi, f y * g (x - y)) 2 MeasureTheory.volume 2 ^ 5 * MeasureTheory.eLpNorm ((Set.Ioc 0 (2 * Real.pi)).indicator f) 2 MeasureTheory.volume

        Lemma 11.3.4. The blueprint states this on [-π, π], but I think we can consistently change this to (0, 2π].

        def dirichletApprox (n : ) (x : ) :

        The function L', defined in the Proof of Lemma 11.3.5.

        Equations
        Instances For

          Lemma 11.3.5, part 1.

          Lemma 11.3.5, part 2.

          theorem approxHilbertTransform_eq_dirichletApprox {f : } {n : } (hmf : Measurable f) (hf : MeasureTheory.eLpNorm f MeasureTheory.volume < ) (periodic_f : Function.Periodic f (2 * Real.pi)) {n✝ : } {x : } :
          approxHilbertTransform n✝ f x = (2 * Real.pi)⁻¹ * ∫ (y : ) in 0 ..2 * Real.pi, f y * dirichletApprox n✝ (x - y)

          Lemma 11.3.5, part 3. The blueprint states this on [-π, π], but I think we can consistently change this to (0, 2π].

          theorem dist_dirichletApprox_le {f : } {n : } (hmf : Measurable f) (hf : MeasureTheory.eLpNorm f MeasureTheory.volume < ) (periodic_f : Function.Periodic f (2 * Real.pi)) {r : } (hr : r Set.Ioo 0 1) {n✝ : } (hn : n✝ = r⁻¹⌉₊) {x : } :
          dist (dirichletApprox n✝ x) ({y : | y Set.Ioo r 1}.indicator 1 x) 2 ^ 5 * niceKernel r x

          Lemma 11.3.5, part 4. The blueprint states this on [-π, π], but I think we can consistently change this to (0, 2π].