Documentation
Carleson
.
Classical
.
HilbertKernel
Search
Google site search
return to top
source
Imports
Init
Carleson.Classical.Basic
Carleson.Classical.Helper
Mathlib.Tactic.FunProp
Imported by
k
k_of_neg_eq_conj_k
k_of_abs_le_one
k_of_one_le_abs
k_measurable
K
Hilbert_kernel_conj_symm
Hilbert_kernel_measurable
Hilbert_kernel_bound
Hilbert_kernel_regularity_main_part
Hilbert_kernel_regularity
source
def
k
(x :
ℝ
)
:
ℂ
Equations
k
x
=
↑
(
(
1
-
|
x
|
)
⊔
0
)
/
(
1
-
Complex.exp
(
Complex.I
*
↑
x
)
)
Instances For
source
theorem
k_of_neg_eq_conj_k
{x :
ℝ
}
:
k
(
-
x
)
=
(
starRingEnd
ℂ
)
(
k
x
)
source
theorem
k_of_abs_le_one
{x :
ℝ
}
(abs_le_one :
|
x
|
≤
1
)
:
k
x
=
(
1
-
↑
|
x
|
)
/
(
1
-
Complex.exp
(
Complex.I
*
↑
x
)
)
source
theorem
k_of_one_le_abs
{x :
ℝ
}
(abs_le_one :
1
≤
|
x
|
)
:
k
x
=
0
source
theorem
k_measurable
:
Measurable
k
source
def
K
(x y :
ℝ
)
:
ℂ
Equations
K
x
y
=
k
(
x
-
y
)
Instances For
source
theorem
Hilbert_kernel_conj_symm
{x y :
ℝ
}
:
K
y
x
=
(
starRingEnd
ℂ
)
(
K
x
y
)
source
theorem
Hilbert_kernel_measurable
:
Measurable
(
Function.uncurry
K
)
source
theorem
Hilbert_kernel_bound
{x y :
ℝ
}
:
‖
K
x
y
‖
≤
2
^
2
/
(
2
*
|
x
-
y
|
)
source
theorem
Hilbert_kernel_regularity_main_part
{y y' :
ℝ
}
(yy'nonneg :
0
≤
y
∧
0
≤
y'
)
(ypos :
0
<
y
)
(y2ley' :
y
/
2
≤
y'
)
(hy :
y
≤
1
)
(hy' :
y'
≤
1
)
:
‖
k
(
-
y
)
-
k
(
-
y'
)
‖
≤
2
^
6
*
(
1
/
|
y
|
)
*
(
|
y
-
y'
|
/
|
y
|
)
source
theorem
Hilbert_kernel_regularity
{x y y' :
ℝ
}
:
2
*
|
y
-
y'
|
≤
|
x
-
y
|
→
‖
K
x
y
-
K
x
y'
‖
≤
2
^
8
*
(
1
/
|
x
-
y
|
)
*
(
|
y
-
y'
|
/
|
x
-
y
|
)