Equations
- partialFourierSum N f x = ∑ n ∈ Finset.Icc (-↑N) ↑N, fourierCoeffOn Real.two_pi_pos f n * (fourier n) ↑x
Instances For
@[simp]
theorem
fourierCoeffOn_mul
{a b : ℝ}
{hab : a < b}
{f : ℝ → ℂ}
{c : ℂ}
{n : ℤ}
:
fourierCoeffOn hab (fun (x : ℝ) => c * f x) n = c * fourierCoeffOn hab f n
@[simp]
theorem
fourierCoeffOn_neg
{a b : ℝ}
{hab : a < b}
{f : ℝ → ℂ}
{n : ℤ}
:
fourierCoeffOn hab (-f) n = -fourierCoeffOn hab f n
@[simp]
theorem
fourierCoeffOn_add
{a b : ℝ}
{hab : a < b}
{f g : ℝ → ℂ}
{n : ℤ}
(hf : IntervalIntegrable f MeasureTheory.volume a b)
(hg : IntervalIntegrable g MeasureTheory.volume a b)
:
fourierCoeffOn hab (f + g) n = fourierCoeffOn hab f n + fourierCoeffOn hab g n
@[simp]
theorem
fourierCoeffOn_sub
{a b : ℝ}
{hab : a < b}
{f g : ℝ → ℂ}
{n : ℤ}
(hf : IntervalIntegrable f MeasureTheory.volume a b)
(hg : IntervalIntegrable g MeasureTheory.volume a b)
:
fourierCoeffOn hab (f - g) n = fourierCoeffOn hab f n - fourierCoeffOn hab g n
@[simp]
theorem
partialFourierSum_add
{f g : ℝ → ℂ}
{N : ℕ}
(hf : IntervalIntegrable f MeasureTheory.volume 0 (2 * Real.pi))
(hg : IntervalIntegrable g MeasureTheory.volume 0 (2 * Real.pi))
:
partialFourierSum N (f + g) = partialFourierSum N f + partialFourierSum N g
@[simp]
theorem
partialFourierSum_sub
{f g : ℝ → ℂ}
{N : ℕ}
(hf : IntervalIntegrable f MeasureTheory.volume 0 (2 * Real.pi))
(hg : IntervalIntegrable g MeasureTheory.volume 0 (2 * Real.pi))
:
partialFourierSum N (f - g) = partialFourierSum N f - partialFourierSum N g
@[simp]
theorem
partialFourierSum_mul
{f : ℝ → ℂ}
{a : ℂ}
{N : ℕ}
:
(partialFourierSum N fun (x : ℝ) => a * f x) = fun (x : ℝ) => a * partialFourierSum N f x
theorem
partialFourierSum_periodic
{f : ℝ → ℂ}
{N : ℕ}
:
Function.Periodic (partialFourierSum N f) (2 * Real.pi)
theorem
Function.Periodic.uniformContinuous_of_continuous
{f : ℝ → ℂ}
{T : ℝ}
(hT : 0 < T)
(hp : Function.Periodic f T)
(hc : ContinuousOn f (Set.Icc (-T) (2 * T)))
: