theorem
fourierCoeff_eq_fourierCoeff_of_aeeq
{T : ℝ}
[hT : Fact (0 < T)]
{n : ℤ}
{f g : AddCircle T → ℂ}
(hf : MeasureTheory.AEStronglyMeasurable f AddCircle.haarAddCircle)
(hg : MeasureTheory.AEStronglyMeasurable g AddCircle.haarAddCircle)
(h : f =ᵐ[AddCircle.haarAddCircle] g)
:
Equations
- partialFourierSum N f x = ∑ n ∈ Finset.Icc (-↑N) ↑N, fourierCoeffOn Real.two_pi_pos f n * (fourier n) ↑x
Instances For
def
partialFourierSumLp
{T : ℝ}
[hT : Fact (0 < T)]
(p : ENNReal)
[Fact (1 ≤ p)]
(N : ℕ)
(f : AddCircle T → ℂ)
:
Equations
- partialFourierSumLp p N f = ∑ n ∈ Finset.Icc (-Int.ofNat N) ↑N, fourierCoeff f n • fourierLp p n
Instances For
theorem
partialFourierSum_eq_partialFourierSum'
[hT : Fact (0 < 2 * Real.pi)]
(N : ℕ)
(f : ℝ → ℂ)
:
AddCircle.liftIoc (2 * Real.pi) 0 (partialFourierSum N f) = ⇑(partialFourierSum' N (AddCircle.liftIoc (2 * Real.pi) 0 f))
theorem
partialFourierSupLp_eq_partialFourierSupLp_of_aeeq
{T : ℝ}
[hT : Fact (0 < T)]
{p : ENNReal}
[Fact (1 ≤ p)]
{N : ℕ}
{f g : AddCircle T → ℂ}
(hf : MeasureTheory.AEStronglyMeasurable f AddCircle.haarAddCircle)
(hg : MeasureTheory.AEStronglyMeasurable g AddCircle.haarAddCircle)
(h : f =ᵐ[AddCircle.haarAddCircle] g)
:
theorem
partialFourierSum_aeeq_partialFourierSumLp
[hT : Fact (0 < 2 * Real.pi)]
(p : ENNReal)
[Fact (1 ≤ p)]
(N : ℕ)
(f : ℝ → ℂ)
(h_mem_ℒp : MeasureTheory.MemLp (AddCircle.liftIoc (2 * Real.pi) 0 f) 2 AddCircle.haarAddCircle)
:
AddCircle.liftIoc (2 * Real.pi) 0 (partialFourierSum N f) =ᵐ[AddCircle.haarAddCircle] ↑↑(partialFourierSumLp p N ↑↑(MeasureTheory.MemLp.toLp (AddCircle.liftIoc (2 * Real.pi) 0 f) h_mem_ℒp))
@[simp]
theorem
fourierCoeffOn_add
{a b : ℝ}
{hab : a < b}
{f g : ℝ → ℂ}
{n : ℤ}
(hf : IntervalIntegrable f MeasureTheory.volume a b)
(hg : IntervalIntegrable g MeasureTheory.volume a b)
:
@[simp]
theorem
fourierCoeffOn_sub
{a b : ℝ}
{hab : a < b}
{f g : ℝ → ℂ}
{n : ℤ}
(hf : IntervalIntegrable f MeasureTheory.volume a b)
(hg : IntervalIntegrable g MeasureTheory.volume a b)
:
@[simp]
theorem
partialFourierSum_add
{f g : ℝ → ℂ}
{N : ℕ}
(hf : IntervalIntegrable f MeasureTheory.volume 0 (2 * Real.pi))
(hg : IntervalIntegrable g MeasureTheory.volume 0 (2 * Real.pi))
:
@[simp]
theorem
partialFourierSum_sub
{f g : ℝ → ℂ}
{N : ℕ}
(hf : IntervalIntegrable f MeasureTheory.volume 0 (2 * Real.pi))
(hg : IntervalIntegrable g MeasureTheory.volume 0 (2 * Real.pi))
:
@[simp]
theorem
partialFourierSum_periodic
{f : ℝ → ℂ}
{N : ℕ}
:
Function.Periodic (partialFourierSum N f) (2 * Real.pi)
theorem
Function.Periodic.uniformContinuous_of_continuous
{f : ℝ → ℂ}
{T : ℝ}
(hT : 0 < T)
(hp : Periodic f T)
(hc : ContinuousOn f (Set.Icc (-T) (2 * T)))
: