Documentation

Carleson.Classical.Basic

def partialFourierSum (N : ) (f : ) (x : ) :
Equations
Instances For
    @[simp]
    theorem fourierCoeffOn_mul {a b : } {hab : a < b} {f : } {c : } {n : } :
    fourierCoeffOn hab (fun (x : ) => c * f x) n = c * fourierCoeffOn hab f n
    @[simp]
    theorem fourierCoeffOn_neg {a b : } {hab : a < b} {f : } {n : } :
    @[simp]
    theorem fourierCoeffOn_add {a b : } {hab : a < b} {f g : } {n : } (hf : IntervalIntegrable f MeasureTheory.volume a b) (hg : IntervalIntegrable g MeasureTheory.volume a b) :
    fourierCoeffOn hab (f + g) n = fourierCoeffOn hab f n + fourierCoeffOn hab g n
    @[simp]
    theorem fourierCoeffOn_sub {a b : } {hab : a < b} {f g : } {n : } (hf : IntervalIntegrable f MeasureTheory.volume a b) (hg : IntervalIntegrable g MeasureTheory.volume a b) :
    fourierCoeffOn hab (f - g) n = fourierCoeffOn hab f n - fourierCoeffOn hab g n
    @[simp]
    theorem partialFourierSum_add {f g : } {N : } (hf : IntervalIntegrable f MeasureTheory.volume 0 (2 * Real.pi)) (hg : IntervalIntegrable g MeasureTheory.volume 0 (2 * Real.pi)) :
    @[simp]
    theorem partialFourierSum_sub {f g : } {N : } (hf : IntervalIntegrable f MeasureTheory.volume 0 (2 * Real.pi)) (hg : IntervalIntegrable g MeasureTheory.volume 0 (2 * Real.pi)) :
    @[simp]
    theorem partialFourierSum_mul {f : } {a : } {N : } :
    (partialFourierSum N fun (x : ) => a * f x) = fun (x : ) => a * partialFourierSum N f x
    theorem fourier_periodic {n : } :
    Function.Periodic (fun (x : ) => (fourier n) x) (2 * Real.pi)
    theorem fourier_uniformContinuous {n : } :
    UniformContinuous fun (x : ) => (fourier n) x
    theorem lower_secant_bound' {η x : } (le_abs_x : η |x|) (abs_x_le : |x| 2 * Real.pi - η) :
    theorem lower_secant_bound {η x : } (xIcc : x Set.Icc (-2 * Real.pi + η) (2 * Real.pi - η)) (xAbs : η |x|) :
    η / 2 Complex.abs (1 - Complex.exp (Complex.I * x))