Documentation

Carleson.Classical.Basic

def partialFourierSum' {T : } [hT : Fact (0 < T)] (N : ) (f : AddCircle T) :
Equations
Instances For
    def partialFourierSumLp {T : } [hT : Fact (0 < T)] (p : ENNReal) [Fact (1 p)] (N : ) (f : AddCircle T) :
    Equations
    Instances For
      @[simp]
      theorem fourierCoeffOn_mul {a b : } {hab : a < b} {f : } {c : } {n : } :
      fourierCoeffOn hab (fun (x : ) => c * f x) n = c * fourierCoeffOn hab f n
      @[simp]
      theorem fourierCoeffOn_neg {a b : } {hab : a < b} {f : } {n : } :
      @[simp]
      theorem fourierCoeffOn_add {a b : } {hab : a < b} {f g : } {n : } (hf : IntervalIntegrable f MeasureTheory.volume a b) (hg : IntervalIntegrable g MeasureTheory.volume a b) :
      fourierCoeffOn hab (f + g) n = fourierCoeffOn hab f n + fourierCoeffOn hab g n
      @[simp]
      theorem fourierCoeffOn_sub {a b : } {hab : a < b} {f g : } {n : } (hf : IntervalIntegrable f MeasureTheory.volume a b) (hg : IntervalIntegrable g MeasureTheory.volume a b) :
      fourierCoeffOn hab (f - g) n = fourierCoeffOn hab f n - fourierCoeffOn hab g n
      @[simp]
      theorem partialFourierSum_mul {f : } {a : } {N : } :
      (partialFourierSum N fun (x : ) => a * f x) = fun (x : ) => a * partialFourierSum N f x
      theorem fourier_periodic {n : } :
      Function.Periodic (fun (x : ) => (fourier n) x) (2 * Real.pi)
      theorem Function.Periodic.uniformContinuous_of_continuous {f : } {T : } (hT : 0 < T) (hp : Periodic f T) (hc : ContinuousOn f (Set.Icc (-T) (2 * T))) :
      theorem fourier_uniformContinuous {n : } :
      UniformContinuous fun (x : ) => (fourier n) x
      theorem lower_secant_bound_aux {η : } (ηpos : 0 < η) {x : } (le_abs_x : η x) (abs_x_le : x 2 * Real.pi - η) (x_le_pi : x Real.pi) (h : Real.pi / 2 < x) :
      theorem lower_secant_bound' {η x : } (le_abs_x : η |x|) (abs_x_le : |x| 2 * Real.pi - η) :
      theorem lower_secant_bound {η x : } (xIcc : x Set.Icc (-2 * Real.pi + η) (2 * Real.pi - η)) (xAbs : η |x|) :