Documentation

Carleson.Classical.SpectralProjectionBound

theorem L2norm_sq_eq {T : } [hT : Fact (0 < T)] (f : (MeasureTheory.Lp 2 AddCircle.haarAddCircle)) :
f ^ 2 = ∫ (x : AddCircle T), f x ^ 2AddCircle.haarAddCircle
theorem fourierCoeff_eq_innerProduct {T : } [hT : Fact (0 < T)] [h2 : Fact (1 2)] {f : (MeasureTheory.Lp 2 AddCircle.haarAddCircle)} {n : } :
fourierCoeff (↑f) n = inner (fourierLp 2 n) f
def partialFourierSumLp {T : } [hT : Fact (0 < T)] (p : ENNReal) [Fact (1 p)] (N : ) (f : (MeasureTheory.Lp 2 AddCircle.haarAddCircle)) :
(MeasureTheory.Lp p AddCircle.haarAddCircle)
Equations
Instances For
    theorem partialFourierSumL2_norm {T : } [hT : Fact (0 < T)] [h2 : Fact (1 2)] {f : (MeasureTheory.Lp 2 AddCircle.haarAddCircle)} {N : } :
    partialFourierSumLp 2 N f ^ 2 = nFinset.Icc (-Int.ofNat N) N, fourierCoeff (↑f) n ^ 2
    theorem spectral_projection_bound_sq {T : } [hT : Fact (0 < T)] (N : ) (f : (MeasureTheory.Lp 2 AddCircle.haarAddCircle)) :
    theorem spectral_projection_bound_sq_integral {N : } {T : } [hT : Fact (0 < T)] (f : (MeasureTheory.Lp 2 AddCircle.haarAddCircle)) :
    ∫ (t : AddCircle T), (partialFourierSumLp 2 N f) t ^ 2AddCircle.haarAddCircle ∫ (t : AddCircle T), f t ^ 2AddCircle.haarAddCircle
    theorem spectral_projection_bound {N : } {T : } [hT : Fact (0 < T)] (f : (MeasureTheory.Lp 2 AddCircle.haarAddCircle)) :