Documentation

Carleson.Classical.SpectralProjectionBound

theorem L2norm_sq_eq {T : } [hT : Fact (0 < T)] (f : (MeasureTheory.Lp 2 AddCircle.haarAddCircle)) :
f ^ 2 = ∫ (x : AddCircle T), f x ^ 2AddCircle.haarAddCircle
theorem fourierCoeff_eq_innerProduct {T : } [hT : Fact (0 < T)] [h2 : Fact (1 2)] {f : (MeasureTheory.Lp 2 AddCircle.haarAddCircle)} {n : } :
fourierCoeff (↑f) n = inner (fourierLp 2 n) f
Equations
Instances For
    theorem partialFourierSumL2_norm {T : } [hT : Fact (0 < T)] [h2 : Fact (1 2)] {f : (MeasureTheory.Lp 2 AddCircle.haarAddCircle)} {N : } :
    partialFourierSumLp 2 N f ^ 2 = nFinset.Icc (-Int.ofNat N) N, fourierCoeff (↑f) n ^ 2