theorem
fourierCoeff_eq_innerProduct
{T : ℝ}
[hT : Fact (0 < T)]
[h2 : Fact (1 ≤ 2)]
{f : ↥(MeasureTheory.Lp ℂ 2 AddCircle.haarAddCircle)}
{n : ℤ}
:
fourierCoeff (↑↑f) n = inner (fourierLp 2 n) f
def
partialFourierSumLp
{T : ℝ}
[hT : Fact (0 < T)]
(p : ENNReal)
[Fact (1 ≤ p)]
(N : ℕ)
(f : ↥(MeasureTheory.Lp ℂ 2 AddCircle.haarAddCircle))
:
↥(MeasureTheory.Lp ℂ p AddCircle.haarAddCircle)
Equations
- partialFourierSumLp p N f = ∑ n ∈ Finset.Icc (-Int.ofNat N) ↑N, fourierCoeff (↑↑f) n • fourierLp p n
Instances For
theorem
partialFourierSumL2_norm
{T : ℝ}
[hT : Fact (0 < T)]
[h2 : Fact (1 ≤ 2)]
{f : ↥(MeasureTheory.Lp ℂ 2 AddCircle.haarAddCircle)}
{N : ℕ}
:
‖partialFourierSumLp 2 N f‖ ^ 2 = ∑ n ∈ Finset.Icc (-Int.ofNat N) ↑N, ‖fourierCoeff (↑↑f) n‖ ^ 2
theorem
spectral_projection_bound
{N : ℕ}
{T : ℝ}
[hT : Fact (0 < T)]
(f : ↥(MeasureTheory.Lp ℂ 2 AddCircle.haarAddCircle))
: