Equations
- dirichletKernel N x = ∑ n ∈ Finset.Icc (-Int.ofNat N) ↑N, (fourier n) ↑x
Instances For
Equations
- dirichletKernel' N x = Complex.exp (Complex.I * ↑N * ↑x) / (1 - Complex.exp (-Complex.I * ↑x)) + Complex.exp (-Complex.I * ↑N * ↑x) / (1 - Complex.exp (Complex.I * ↑x))
Instances For
theorem
dirichletKernel_eq
{N : ℕ}
{x : ℝ}
(h : Complex.exp (Complex.I * ↑x) ≠ 1)
:
dirichletKernel N x = dirichletKernel' N x
Second part of Lemma 11.1.8 (Dirichlet kernel) from the paper.
theorem
dirichletKernel'_eq_zero
{N : ℕ}
{x : ℝ}
(h : Complex.exp (Complex.I * ↑x) = 1)
:
dirichletKernel' N x = 0
theorem
partialFourierSum_eq_conv_dirichletKernel
{N : ℕ}
{f : ℝ → ℂ}
{x : ℝ}
(h : IntervalIntegrable f MeasureTheory.volume 0 (2 * Real.pi))
:
First part of lemma 11.1.8 (Dirichlet kernel) from the blueprint.