Documentation

Carleson.Classical.ControlApproximationEffect

theorem ENNReal.le_on_subset {X : Type} [MeasurableSpace X] (μ : MeasureTheory.Measure X) {f : XENNReal} {g : XENNReal} {E : Set X} (hE : MeasurableSet E) (hf : Measurable f) (hg : Measurable g) {a : ENNReal} (h : xE, a f x + g x) :
E'E, MeasurableSet E' μ E 2 * μ E' ((∀ xE', a / 2 f x) xE', a / 2 g x)
theorem Dirichlet_Hilbert_eq {N : } {x : } :
(max (1 - |x|) 0) * dirichletKernel' N x = Complex.exp (Complex.I * (-N * x)) * k x + (starRingEnd ) (Complex.exp (Complex.I * (-N * x)) * k x)
theorem le_iSup_of_tendsto {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [CompleteLinearOrder α] [OrderTopology α] [Nonempty β] [SemilatticeSup β] {f : βα} {a : α} (ha : Filter.Tendsto f Filter.atTop (nhds a)) :
a iSup f
theorem integrable_annulus {x : } (hx : x Set.Icc 0 (2 * Real.pi)) {f : } (hf : IntervalIntegrable f MeasureTheory.volume (-Real.pi) (3 * Real.pi)) {r : } (r_nonneg : 0 r) (rle1 : r < 1) :
MeasureTheory.Integrable (fun (x : ) => f x) (MeasureTheory.volume.restrict {y : | dist x y Set.Ioo r 1})
theorem intervalIntegrable_mul_dirichletKernel' {x : } (hx : x Set.Icc 0 (2 * Real.pi)) {f : } (hf : IntervalIntegrable f MeasureTheory.volume (-Real.pi) (3 * Real.pi)) {N : } :
IntervalIntegrable (fun (y : ) => f y * dirichletKernel' N (x - y)) MeasureTheory.volume (x - Real.pi) (x + Real.pi)
theorem intervalIntegrable_mul_dirichletKernel'_max {x : } (hx : x Set.Icc 0 (2 * Real.pi)) {f : } (hf : IntervalIntegrable f MeasureTheory.volume (-Real.pi) (3 * Real.pi)) {N : } :
IntervalIntegrable (fun (y : ) => f y * ((max (1 - |x - y|) 0) * dirichletKernel' N (x - y))) MeasureTheory.volume (x - Real.pi) (x + Real.pi)
theorem intervalIntegrable_mul_dirichletKernel'_max' {x : } (hx : x Set.Icc 0 (2 * Real.pi)) {f : } (hf : IntervalIntegrable f MeasureTheory.volume (-Real.pi) (3 * Real.pi)) {N : } :
IntervalIntegrable (fun (y : ) => f y * (dirichletKernel' N (x - y) - (max (1 - |x - y|) 0) * dirichletKernel' N (x - y))) MeasureTheory.volume (x - Real.pi) (x + Real.pi)
theorem domain_reformulation {g : } (hg : IntervalIntegrable g MeasureTheory.volume (-Real.pi) (3 * Real.pi)) {N : } {x : } (hx : x Set.Icc 0 (2 * Real.pi)) :
∫ (y : ) in x - Real.pi..x + Real.pi, g y * ((max (1 - |x - y|) 0) * dirichletKernel' N (x - y)) = ∫ (y : ) in {y : | dist x y Set.Ioo 0 1}, g y * ((max (1 - |x - y|) 0) * dirichletKernel' N (x - y))
theorem intervalIntegrable_mul_dirichletKernel'_specific {x : } (hx : x Set.Icc 0 (2 * Real.pi)) {f : } (hf : IntervalIntegrable f MeasureTheory.volume (-Real.pi) (3 * Real.pi)) {N : } :
MeasureTheory.IntegrableOn (fun (y : ) => f y * ((max (1 - |x - y|) 0) * dirichletKernel' N (x - y))) {y : | dist x y Set.Ioo 0 1} MeasureTheory.volume
theorem le_CarlesonOperatorReal {g : } (hg : IntervalIntegrable g MeasureTheory.volume (-Real.pi) (3 * Real.pi)) {N : } {x : } (hx : x Set.Icc 0 (2 * Real.pi)) :
∫ (y : ) in x - Real.pi..x + Real.pi, g y * ((max (1 - |x - y|) 0) * dirichletKernel' N (x - y))‖₊ carlesonOperatorReal K g x + carlesonOperatorReal K ((starRingEnd ) g) x
theorem partialFourierSum_bound {δ : } (hδ : 0 < δ) {g : } (measurable_g : Measurable g) (periodic_g : Function.Periodic g (2 * Real.pi)) (bound_g : ∀ (x : ), g x δ) {N : } {x : } (hx : x Set.Icc 0 (2 * Real.pi)) :
theorem rcarleson_exceptional_set_estimate {δ : } (δpos : 0 < δ) {f : } (hmf : Measurable f) {F : Set } (measurableSetF : MeasurableSet F) (hf : ∀ (x : ), f x δ * F.indicator 1 x) {E : Set } (measurableSetE : MeasurableSet E) {ε : ENNReal} (hE : xE, ε carlesonOperatorReal K f x) :
ε * MeasureTheory.volume E ENNReal.ofReal (δ * C10_0_1 4 2) * MeasureTheory.volume F ^ 2⁻¹ * MeasureTheory.volume E ^ 2⁻¹
theorem rcarleson_exceptional_set_estimate_specific {δ : } (δpos : 0 < δ) {f : } (hmf : Measurable f) (hf : ∀ (x : ), f x δ) {E : Set } (measurableSetE : MeasurableSet E) (E_subset : E Set.Icc 0 (2 * Real.pi)) {ε : ENNReal} (hE : xE, ε carlesonOperatorReal K f x) :
ε * MeasureTheory.volume E ENNReal.ofReal (δ * C10_0_1 4 2 * (2 * Real.pi + 2) ^ 2⁻¹) * MeasureTheory.volume E ^ 2⁻¹
theorem C_control_approximation_effect_eq {ε : } {δ : } (ε_nonneg : 0 ε) :
theorem control_approximation_effect {ε : } (εpos : 0 < ε) {δ : } (hδ : 0 < δ) {h : } (h_measurable : Measurable h) (h_periodic : Function.Periodic h (2 * Real.pi)) (h_bound : ∀ (x : ), h x δ) :
ESet.Icc 0 (2 * Real.pi), MeasurableSet E MeasureTheory.volume.real E ε xSet.Icc 0 (2 * Real.pi) \ E, ∀ (N : ), partialFourierSum N h x C_control_approximation_effect ε * δ