theorem
ENNReal.le_on_subset
{X : Type}
[MeasurableSpace X]
(μ : MeasureTheory.Measure X)
{f g : X → ENNReal}
{E : Set X}
(hE : MeasurableSet E)
(hf : Measurable f)
(hg : Measurable g)
{a : ENNReal}
(h : ∀ x ∈ E, a ≤ f x + g x)
:
theorem
le_iSup_of_tendsto
{α : Type u_1}
{β : Type u_2}
[TopologicalSpace α]
[CompleteLinearOrder α]
[OrderTopology α]
[Nonempty β]
[SemilatticeSup β]
{f : β → α}
{a : α}
(ha : Filter.Tendsto f Filter.atTop (nhds a))
:
theorem
intervalIntegrable_mul_dirichletKernel'
{x : ℝ}
(hx : x ∈ Set.Icc 0 (2 * Real.pi))
{f : ℝ → ℂ}
(hf : IntervalIntegrable f MeasureTheory.volume (-Real.pi) (3 * Real.pi))
{N : ℕ}
:
IntervalIntegrable (fun (y : ℝ) => f y * dirichletKernel' N (x - y)) MeasureTheory.volume (x - Real.pi) (x + Real.pi)
theorem
partialFourierSum_bound
{δ : ℝ}
(hδ : 0 < δ)
{g : ℝ → ℂ}
(measurable_g : Measurable g)
(periodic_g : Function.Periodic g (2 * Real.pi))
(bound_g : ∀ (x : ℝ), ‖g x‖ ≤ δ)
{N : ℕ}
{x : ℝ}
(hx : x ∈ Set.Icc 0 (2 * Real.pi))
:
↑‖partialFourierSum N g x‖₊ ≤ (carlesonOperatorReal K g x + carlesonOperatorReal K (⇑(starRingEnd ℂ) ∘ g) x) / ENNReal.ofReal (2 * Real.pi) + ENNReal.ofReal (Real.pi * δ)
theorem
rcarleson_exceptional_set_estimate
{δ : ℝ}
(δpos : 0 < δ)
{f : ℝ → ℂ}
(hmf : Measurable f)
{F : Set ℝ}
(measurableSetF : MeasurableSet F)
(hf : ∀ (x : ℝ), ‖f x‖ ≤ δ * F.indicator 1 x)
{E : Set ℝ}
(measurableSetE : MeasurableSet E)
{ε : ENNReal}
(hE : ∀ x ∈ E, ε ≤ carlesonOperatorReal K f x)
:
theorem
control_approximation_effect
{ε : ℝ}
(εpos : 0 < ε)
{δ : ℝ}
(hδ : 0 < δ)
{h : ℝ → ℂ}
(h_measurable : Measurable h)
(h_periodic : Function.Periodic h (2 * Real.pi))
(h_bound : ∀ (x : ℝ), ‖h x‖ ≤ δ)
: