Documentation

Mathlib.Order.Lattice

(Semi-)lattices #

Semilattices are partially ordered sets with join (least upper bound, or sup) or meet (greatest lower bound, or inf) operations. Lattices are posets that are both join-semilattices and meet-semilattices.

Distributive lattices are lattices which satisfy any of four equivalent distributivity properties, of sup over inf, on the left or on the right.

Main declarations #

Notations #

TODO #

Tags #

semilattice, lattice

See if the term is a ⊂ b and the goal is a ⊆ b.

Equations

Join-semilattices #

class SemilatticeSup (α : Type u) extends PartialOrder α :

A SemilatticeSup is a join-semilattice, that is, a partial order with a join (a.k.a. lub / least upper bound, sup / supremum) operation which is the least element larger than both factors.

  • le : ααProp
  • lt : ααProp
  • le_refl (a : α) : a a
  • le_trans (a b c : α) : a bb ca c
  • lt_iff_le_not_le (a b : α) : a < b a b ¬b a
  • le_antisymm (a b : α) : a bb aa = b
  • sup : ααα

    The binary supremum, used to derive Max α

  • le_sup_left (a b : α) : a sup a b

    The supremum is an upper bound on the first argument

  • le_sup_right (a b : α) : b sup a b

    The supremum is an upper bound on the second argument

  • sup_le (a b c : α) : a cb csup a b c

    The supremum is the least upper bound

Instances
    instance SemilatticeSup.toMax {α : Type u} [SemilatticeSup α] :
    Max α
    Equations
    def SemilatticeSup.mk' {α : Type u_1} [Max α] (sup_comm : ∀ (a b : α), a b = b a) (sup_assoc : ∀ (a b c : α), a b c = a (b c)) (sup_idem : ∀ (a : α), a a = a) :

    A type with a commutative, associative and idempotent binary sup operation has the structure of a join-semilattice.

    The partial order is defined so that a ≤ b unfolds to a ⊔ b = b; cf. sup_eq_right.

    Equations
    • One or more equations did not get rendered due to their size.
    @[simp]
    theorem le_sup_left {α : Type u} [SemilatticeSup α] {a b : α} :
    a a b
    @[simp]
    theorem le_sup_right {α : Type u} [SemilatticeSup α] {a b : α} :
    b a b
    theorem le_sup_of_le_left {α : Type u} [SemilatticeSup α] {a b c : α} (h : c a) :
    c a b
    theorem le_sup_of_le_right {α : Type u} [SemilatticeSup α] {a b c : α} (h : c b) :
    c a b
    theorem lt_sup_of_lt_left {α : Type u} [SemilatticeSup α] {a b c : α} (h : c < a) :
    c < a b
    theorem lt_sup_of_lt_right {α : Type u} [SemilatticeSup α] {a b c : α} (h : c < b) :
    c < a b
    theorem sup_le {α : Type u} [SemilatticeSup α] {a b c : α} :
    a cb ca b c
    @[simp]
    theorem sup_le_iff {α : Type u} [SemilatticeSup α] {a b c : α} :
    a b c a c b c
    @[simp]
    theorem sup_eq_left {α : Type u} [SemilatticeSup α] {a b : α} :
    a b = a b a
    @[simp]
    theorem sup_eq_right {α : Type u} [SemilatticeSup α] {a b : α} :
    a b = b a b
    @[simp]
    theorem left_eq_sup {α : Type u} [SemilatticeSup α] {a b : α} :
    a = a b b a
    @[simp]
    theorem right_eq_sup {α : Type u} [SemilatticeSup α] {a b : α} :
    b = a b a b
    @[simp]
    theorem sup_of_le_left {α : Type u} [SemilatticeSup α] {a b : α} :
    b aa b = a

    Alias of the reverse direction of sup_eq_left.

    @[simp]
    theorem sup_of_le_right {α : Type u} [SemilatticeSup α] {a b : α} :
    a ba b = b

    Alias of the reverse direction of sup_eq_right.

    theorem le_of_sup_eq {α : Type u} [SemilatticeSup α] {a b : α} :
    a b = ba b

    Alias of the forward direction of sup_eq_right.

    @[simp]
    theorem left_lt_sup {α : Type u} [SemilatticeSup α] {a b : α} :
    a < a b ¬b a
    @[simp]
    theorem right_lt_sup {α : Type u} [SemilatticeSup α] {a b : α} :
    b < a b ¬a b
    theorem left_or_right_lt_sup {α : Type u} [SemilatticeSup α] {a b : α} (h : a b) :
    a < a b b < a b
    theorem le_iff_exists_sup {α : Type u} [SemilatticeSup α] {a b : α} :
    a b (c : α), b = a c
    theorem sup_le_sup {α : Type u} [SemilatticeSup α] {a b c d : α} (h₁ : a b) (h₂ : c d) :
    a c b d
    theorem sup_le_sup_left {α : Type u} [SemilatticeSup α] {a b : α} (h₁ : a b) (c : α) :
    c a c b
    theorem sup_le_sup_right {α : Type u} [SemilatticeSup α] {a b : α} (h₁ : a b) (c : α) :
    a c b c
    theorem sup_idem {α : Type u} [SemilatticeSup α] (a : α) :
    a a = a
    instance instIdempotentOpMax_mathlib {α : Type u} [SemilatticeSup α] :
    Std.IdempotentOp fun (x1 x2 : α) => x1 x2
    theorem sup_comm {α : Type u} [SemilatticeSup α] (a b : α) :
    a b = b a
    instance instCommutativeMax_mathlib {α : Type u} [SemilatticeSup α] :
    Std.Commutative fun (x1 x2 : α) => x1 x2
    theorem sup_assoc {α : Type u} [SemilatticeSup α] (a b c : α) :
    a b c = a (b c)
    instance instAssociativeMax_mathlib {α : Type u} [SemilatticeSup α] :
    Std.Associative fun (x1 x2 : α) => x1 x2
    theorem sup_left_right_swap {α : Type u} [SemilatticeSup α] (a b c : α) :
    a b c = c b a
    theorem sup_left_idem {α : Type u} [SemilatticeSup α] (a b : α) :
    a (a b) = a b
    theorem sup_right_idem {α : Type u} [SemilatticeSup α] (a b : α) :
    a b b = a b
    theorem sup_left_comm {α : Type u} [SemilatticeSup α] (a b c : α) :
    a (b c) = b (a c)
    theorem sup_right_comm {α : Type u} [SemilatticeSup α] (a b c : α) :
    a b c = a c b
    theorem sup_sup_sup_comm {α : Type u} [SemilatticeSup α] (a b c d : α) :
    a b (c d) = a c (b d)
    theorem sup_sup_distrib_left {α : Type u} [SemilatticeSup α] (a b c : α) :
    a (b c) = a b (a c)
    theorem sup_sup_distrib_right {α : Type u} [SemilatticeSup α] (a b c : α) :
    a b c = a c (b c)
    theorem sup_congr_left {α : Type u} [SemilatticeSup α] {a b c : α} (hb : b a c) (hc : c a b) :
    a b = a c
    theorem sup_congr_right {α : Type u} [SemilatticeSup α] {a b c : α} (ha : a b c) (hb : b a c) :
    a c = b c
    theorem sup_eq_sup_iff_left {α : Type u} [SemilatticeSup α] {a b c : α} :
    a b = a c b a c c a b
    theorem sup_eq_sup_iff_right {α : Type u} [SemilatticeSup α] {a b c : α} :
    a c = b c a b c b a c
    theorem Ne.lt_sup_or_lt_sup {α : Type u} [SemilatticeSup α] {a b : α} (hab : a b) :
    a < a b b < a b
    theorem Monotone.forall_le_of_antitone {α : Type u} [SemilatticeSup α] {β : Type u_1} [Preorder β] {f g : αβ} (hf : Monotone f) (hg : Antitone g) (h : f g) (m n : α) :
    f m g n

    If f is monotone, g is antitone, and f ≤ g, then for all a, b we have f a ≤ g b.

    theorem SemilatticeSup.ext_sup {α : Type u_1} {A B : SemilatticeSup α} (H : ∀ (x y : α), x y x y) (x y : α) :
    x y = x y
    theorem SemilatticeSup.ext {α : Type u_1} {A B : SemilatticeSup α} (H : ∀ (x y : α), x y x y) :
    A = B
    theorem ite_le_sup {α : Type u} [SemilatticeSup α] (s s' : α) (P : Prop) [Decidable P] :
    (if P then s else s') s s'

    Meet-semilattices #

    class SemilatticeInf (α : Type u) extends PartialOrder α :

    A SemilatticeInf is a meet-semilattice, that is, a partial order with a meet (a.k.a. glb / greatest lower bound, inf / infimum) operation which is the greatest element smaller than both factors.

    • le : ααProp
    • lt : ααProp
    • le_refl (a : α) : a a
    • le_trans (a b c : α) : a bb ca c
    • lt_iff_le_not_le (a b : α) : a < b a b ¬b a
    • le_antisymm (a b : α) : a bb aa = b
    • inf : ααα

      The binary infimum, used to derive Min α

    • inf_le_left (a b : α) : inf a b a

      The infimum is a lower bound on the first argument

    • inf_le_right (a b : α) : inf a b b

      The infimum is a lower bound on the second argument

    • le_inf (a b c : α) : a ba ca inf b c

      The infimum is the greatest lower bound

    Instances
      instance SemilatticeInf.toMin {α : Type u} [SemilatticeInf α] :
      Min α
      Equations
      Equations
      Equations
      @[simp]
      theorem inf_le_left {α : Type u} [SemilatticeInf α] {a b : α} :
      a b a
      @[simp]
      theorem inf_le_right {α : Type u} [SemilatticeInf α] {a b : α} :
      a b b
      theorem le_inf {α : Type u} [SemilatticeInf α] {a b c : α} :
      a ba ca b c
      theorem inf_le_of_left_le {α : Type u} [SemilatticeInf α] {a b c : α} (h : a c) :
      a b c
      theorem inf_le_of_right_le {α : Type u} [SemilatticeInf α] {a b c : α} (h : b c) :
      a b c
      theorem inf_lt_of_left_lt {α : Type u} [SemilatticeInf α] {a b c : α} (h : a < c) :
      a b < c
      theorem inf_lt_of_right_lt {α : Type u} [SemilatticeInf α] {a b c : α} (h : b < c) :
      a b < c
      @[simp]
      theorem le_inf_iff {α : Type u} [SemilatticeInf α] {a b c : α} :
      a b c a b a c
      @[simp]
      theorem inf_eq_left {α : Type u} [SemilatticeInf α] {a b : α} :
      a b = a a b
      @[simp]
      theorem inf_eq_right {α : Type u} [SemilatticeInf α] {a b : α} :
      a b = b b a
      @[simp]
      theorem left_eq_inf {α : Type u} [SemilatticeInf α] {a b : α} :
      a = a b a b
      @[simp]
      theorem right_eq_inf {α : Type u} [SemilatticeInf α] {a b : α} :
      b = a b b a
      theorem le_of_inf_eq {α : Type u} [SemilatticeInf α] {a b : α} :
      a b = aa b

      Alias of the forward direction of inf_eq_left.

      @[simp]
      theorem inf_of_le_left {α : Type u} [SemilatticeInf α] {a b : α} :
      a ba b = a

      Alias of the reverse direction of inf_eq_left.

      @[simp]
      theorem inf_of_le_right {α : Type u} [SemilatticeInf α] {a b : α} :
      b aa b = b

      Alias of the reverse direction of inf_eq_right.

      @[simp]
      theorem inf_lt_left {α : Type u} [SemilatticeInf α] {a b : α} :
      a b < a ¬a b
      @[simp]
      theorem inf_lt_right {α : Type u} [SemilatticeInf α] {a b : α} :
      a b < b ¬b a
      theorem inf_lt_left_or_right {α : Type u} [SemilatticeInf α] {a b : α} (h : a b) :
      a b < a a b < b
      theorem inf_le_inf {α : Type u} [SemilatticeInf α] {a b c d : α} (h₁ : a b) (h₂ : c d) :
      a c b d
      theorem inf_le_inf_right {α : Type u} [SemilatticeInf α] (a : α) {b c : α} (h : b c) :
      b a c a
      theorem inf_le_inf_left {α : Type u} [SemilatticeInf α] (a : α) {b c : α} (h : b c) :
      a b a c
      theorem inf_idem {α : Type u} [SemilatticeInf α] (a : α) :
      a a = a
      instance instIdempotentOpMin_mathlib {α : Type u} [SemilatticeInf α] :
      Std.IdempotentOp fun (x1 x2 : α) => x1 x2
      theorem inf_comm {α : Type u} [SemilatticeInf α] (a b : α) :
      a b = b a
      instance instCommutativeMin_mathlib {α : Type u} [SemilatticeInf α] :
      Std.Commutative fun (x1 x2 : α) => x1 x2
      theorem inf_assoc {α : Type u} [SemilatticeInf α] (a b c : α) :
      a b c = a (b c)
      instance instAssociativeMin_mathlib {α : Type u} [SemilatticeInf α] :
      Std.Associative fun (x1 x2 : α) => x1 x2
      theorem inf_left_right_swap {α : Type u} [SemilatticeInf α] (a b c : α) :
      a b c = c b a
      theorem inf_left_idem {α : Type u} [SemilatticeInf α] (a b : α) :
      a (a b) = a b
      theorem inf_right_idem {α : Type u} [SemilatticeInf α] (a b : α) :
      a b b = a b
      theorem inf_left_comm {α : Type u} [SemilatticeInf α] (a b c : α) :
      a (b c) = b (a c)
      theorem inf_right_comm {α : Type u} [SemilatticeInf α] (a b c : α) :
      a b c = a c b
      theorem inf_inf_inf_comm {α : Type u} [SemilatticeInf α] (a b c d : α) :
      a b (c d) = a c (b d)
      theorem inf_inf_distrib_left {α : Type u} [SemilatticeInf α] (a b c : α) :
      a (b c) = a b (a c)
      theorem inf_inf_distrib_right {α : Type u} [SemilatticeInf α] (a b c : α) :
      a b c = a c (b c)
      theorem inf_congr_left {α : Type u} [SemilatticeInf α] {a b c : α} (hb : a c b) (hc : a b c) :
      a b = a c
      theorem inf_congr_right {α : Type u} [SemilatticeInf α] {a b c : α} (h1 : b c a) (h2 : a c b) :
      a c = b c
      theorem inf_eq_inf_iff_left {α : Type u} [SemilatticeInf α] {a b c : α} :
      a b = a c a c b a b c
      theorem inf_eq_inf_iff_right {α : Type u} [SemilatticeInf α] {a b c : α} :
      a c = b c b c a a c b
      theorem Ne.inf_lt_or_inf_lt {α : Type u} [SemilatticeInf α] {a b : α} :
      a ba b < a a b < b
      theorem SemilatticeInf.ext_inf {α : Type u_1} {A B : SemilatticeInf α} (H : ∀ (x y : α), x y x y) (x y : α) :
      x y = x y
      theorem SemilatticeInf.ext {α : Type u_1} {A B : SemilatticeInf α} (H : ∀ (x y : α), x y x y) :
      A = B
      theorem inf_le_ite {α : Type u} [SemilatticeInf α] (s s' : α) (P : Prop) [Decidable P] :
      s s' if P then s else s'
      def SemilatticeInf.mk' {α : Type u_1} [Min α] (inf_comm : ∀ (a b : α), a b = b a) (inf_assoc : ∀ (a b c : α), a b c = a (b c)) (inf_idem : ∀ (a : α), a a = a) :

      A type with a commutative, associative and idempotent binary inf operation has the structure of a meet-semilattice.

      The partial order is defined so that a ≤ b unfolds to b ⊓ a = a; cf. inf_eq_right.

      Equations

      Lattices #

      class Lattice (α : Type u) extends SemilatticeSup α, SemilatticeInf α :

      A lattice is a join-semilattice which is also a meet-semilattice.

      Instances
        instance OrderDual.instLattice (α : Type u_1) [Lattice α] :
        Equations
        theorem semilatticeSup_mk'_partialOrder_eq_semilatticeInf_mk'_partialOrder {α : Type u_1} [Max α] [Min α] (sup_comm : ∀ (a b : α), a b = b a) (sup_assoc : ∀ (a b c : α), a b c = a (b c)) (sup_idem : ∀ (a : α), a a = a) (inf_comm : ∀ (a b : α), a b = b a) (inf_assoc : ∀ (a b c : α), a b c = a (b c)) (inf_idem : ∀ (a : α), a a = a) (sup_inf_self : ∀ (a b : α), a a b = a) (inf_sup_self : ∀ (a b : α), a (a b) = a) :

        The partial orders from SemilatticeSup_mk' and SemilatticeInf_mk' agree if sup and inf satisfy the lattice absorption laws sup_inf_self (a ⊔ a ⊓ b = a) and inf_sup_self (a ⊓ (a ⊔ b) = a).

        def Lattice.mk' {α : Type u_1} [Max α] [Min α] (sup_comm : ∀ (a b : α), a b = b a) (sup_assoc : ∀ (a b c : α), a b c = a (b c)) (inf_comm : ∀ (a b : α), a b = b a) (inf_assoc : ∀ (a b c : α), a b c = a (b c)) (sup_inf_self : ∀ (a b : α), a a b = a) (inf_sup_self : ∀ (a b : α), a (a b) = a) :

        A type with a pair of commutative and associative binary operations which satisfy two absorption laws relating the two operations has the structure of a lattice.

        The partial order is defined so that a ≤ b unfolds to a ⊔ b = b; cf. sup_eq_right.

        Equations
        • One or more equations did not get rendered due to their size.
        theorem inf_le_sup {α : Type u} [Lattice α] {a b : α} :
        a b a b
        theorem sup_le_inf {α : Type u} [Lattice α] {a b : α} :
        a b a b a = b
        @[simp]
        theorem inf_eq_sup {α : Type u} [Lattice α] {a b : α} :
        a b = a b a = b
        @[simp]
        theorem sup_eq_inf {α : Type u} [Lattice α] {a b : α} :
        a b = a b a = b
        @[simp]
        theorem inf_lt_sup {α : Type u} [Lattice α] {a b : α} :
        a b < a b a b
        theorem inf_eq_and_sup_eq_iff {α : Type u} [Lattice α] {a b c : α} :
        a b = c a b = c a = c b = c

        Distributivity laws #

        theorem sup_inf_le {α : Type u} [Lattice α] {a b c : α} :
        a b c (a b) (a c)
        theorem le_inf_sup {α : Type u} [Lattice α] {a b c : α} :
        a b a c a (b c)
        theorem inf_sup_self {α : Type u} [Lattice α] {a b : α} :
        a (a b) = a
        theorem sup_inf_self {α : Type u} [Lattice α] {a b : α} :
        a a b = a
        theorem sup_eq_iff_inf_eq {α : Type u} [Lattice α] {a b : α} :
        a b = b a b = a
        theorem Lattice.ext {α : Type u_1} {A B : Lattice α} (H : ∀ (x y : α), x y x y) :
        A = B

        Distributive lattices #

        class DistribLattice (α : Type u_1) extends Lattice α :
        Type u_1

        A distributive lattice is a lattice that satisfies any of four equivalent distributive properties (of sup over inf or inf over sup, on the left or right).

        The definition here chooses le_sup_inf: (x ⊔ y) ⊓ (x ⊔ z) ≤ x ⊔ (y ⊓ z). To prove distributivity from the dual law, use DistribLattice.of_inf_sup_le.

        A classic example of a distributive lattice is the lattice of subsets of a set, and in fact this example is generic in the sense that every distributive lattice is realizable as a sublattice of a powerset lattice.

        Instances
          theorem le_sup_inf {α : Type u} [DistribLattice α] {x y z : α} :
          (x y) (x z) x y z
          theorem sup_inf_left {α : Type u} [DistribLattice α] (a b c : α) :
          a b c = (a b) (a c)
          theorem sup_inf_right {α : Type u} [DistribLattice α] (a b c : α) :
          a b c = (a c) (b c)
          theorem inf_sup_left {α : Type u} [DistribLattice α] (a b c : α) :
          a (b c) = a b a c
          Equations
          theorem inf_sup_right {α : Type u} [DistribLattice α] (a b c : α) :
          (a b) c = a c b c
          theorem le_of_inf_le_sup_le {α : Type u} [DistribLattice α] {x y z : α} (h₁ : x z y z) (h₂ : x z y z) :
          x y
          theorem eq_of_inf_eq_sup_eq {α : Type u} [DistribLattice α] {a b c : α} (h₁ : b a = c a) (h₂ : b a = c a) :
          b = c
          @[reducible, inline]
          abbrev DistribLattice.ofInfSupLe {α : Type u} [Lattice α] (inf_sup_le : ∀ (a b c : α), a (b c) a b a c) :

          Prove distributivity of an existing lattice from the dual distributive law.

          Equations

          Lattices derived from linear orders #

          @[instance 100]
          instance LinearOrder.toLattice {α : Type u} [LinearOrder α] :
          Equations
          • One or more equations did not get rendered due to their size.
          @[deprecated "is syntactical" (since := "2024-11-13")]
          theorem sup_eq_max {α : Type u} [LinearOrder α] {a b : α} :
          a b = a b
          @[deprecated "is syntactical" (since := "2024-11-13")]
          theorem inf_eq_min {α : Type u} [LinearOrder α] {a b : α} :
          a b = a b
          theorem sup_ind {α : Type u} [LinearOrder α] (a b : α) {p : αProp} (ha : p a) (hb : p b) :
          p (a b)
          @[simp]
          theorem le_sup_iff {α : Type u} [LinearOrder α] {a b c : α} :
          a b c a b a c
          @[simp]
          theorem lt_sup_iff {α : Type u} [LinearOrder α] {a b c : α} :
          a < b c a < b a < c
          @[simp]
          theorem sup_lt_iff {α : Type u} [LinearOrder α] {a b c : α} :
          b c < a b < a c < a
          theorem inf_ind {α : Type u} [LinearOrder α] (a b : α) {p : αProp} :
          p ap bp (a b)
          @[simp]
          theorem inf_le_iff {α : Type u} [LinearOrder α] {a b c : α} :
          b c a b a c a
          @[simp]
          theorem inf_lt_iff {α : Type u} [LinearOrder α] {a b c : α} :
          b c < a b < a c < a
          @[simp]
          theorem lt_inf_iff {α : Type u} [LinearOrder α] {a b c : α} :
          a < b c a < b a < c
          theorem max_max_max_comm {α : Type u} [LinearOrder α] (a b c d : α) :
          a b (c d) = a c (b d)
          theorem min_min_min_comm {α : Type u} [LinearOrder α] (a b c d : α) :
          a b (c d) = a c (b d)
          theorem sup_eq_maxDefault {α : Type u} [SemilatticeSup α] [DecidableLE α] [IsTotal α fun (x1 x2 : α) => x1 x2] :
          (fun (x1 x2 : α) => x1 x2) = maxDefault
          theorem inf_eq_minDefault {α : Type u} [SemilatticeInf α] [DecidableLE α] [IsTotal α fun (x1 x2 : α) => x1 x2] :
          (fun (x1 x2 : α) => x1 x2) = minDefault
          @[reducible, inline]
          abbrev Lattice.toLinearOrder (α : Type u) [Lattice α] [DecidableEq α] [DecidableLE α] [DecidableLT α] [IsTotal α fun (x1 x2 : α) => x1 x2] :

          A lattice with total order is a linear order.

          See note [reducible non-instances].

          Equations
          • One or more equations did not get rendered due to their size.
          @[instance 100]
          Equations

          Dual order #

          @[simp]
          theorem ofDual_inf {α : Type u} [Max α] (a b : αᵒᵈ) :
          @[simp]
          theorem ofDual_sup {α : Type u} [Min α] (a b : αᵒᵈ) :
          @[simp]
          theorem toDual_inf {α : Type u} [Min α] (a b : α) :
          @[simp]
          theorem toDual_sup {α : Type u} [Max α] (a b : α) :
          @[simp]
          @[simp]

          Function lattices #

          instance Pi.instMaxForall_mathlib {ι : Type u_1} {α' : ιType u_2} [(i : ι) → Max (α' i)] :
          Max ((i : ι) → α' i)
          Equations
          @[simp]
          theorem Pi.sup_apply {ι : Type u_1} {α' : ιType u_2} [(i : ι) → Max (α' i)] (f g : (i : ι) → α' i) (i : ι) :
          (f g) i = f i g i
          theorem Pi.sup_def {ι : Type u_1} {α' : ιType u_2} [(i : ι) → Max (α' i)] (f g : (i : ι) → α' i) :
          f g = fun (i : ι) => f i g i
          instance Pi.instMinForall_mathlib {ι : Type u_1} {α' : ιType u_2} [(i : ι) → Min (α' i)] :
          Min ((i : ι) → α' i)
          Equations
          @[simp]
          theorem Pi.inf_apply {ι : Type u_1} {α' : ιType u_2} [(i : ι) → Min (α' i)] (f g : (i : ι) → α' i) (i : ι) :
          (f g) i = f i g i
          theorem Pi.inf_def {ι : Type u_1} {α' : ιType u_2} [(i : ι) → Min (α' i)] (f g : (i : ι) → α' i) :
          f g = fun (i : ι) => f i g i
          instance Pi.instSemilatticeSup {ι : Type u_1} {α' : ιType u_2} [(i : ι) → SemilatticeSup (α' i)] :
          SemilatticeSup ((i : ι) → α' i)
          Equations
          instance Pi.instSemilatticeInf {ι : Type u_1} {α' : ιType u_2} [(i : ι) → SemilatticeInf (α' i)] :
          SemilatticeInf ((i : ι) → α' i)
          Equations
          instance Pi.instLattice {ι : Type u_1} {α' : ιType u_2} [(i : ι) → Lattice (α' i)] :
          Lattice ((i : ι) → α' i)
          Equations
          instance Pi.instDistribLattice {ι : Type u_1} {α' : ιType u_2} [(i : ι) → DistribLattice (α' i)] :
          DistribLattice ((i : ι) → α' i)
          Equations
          theorem Function.update_sup {ι : Type u_1} {π : ιType u_2} [DecidableEq ι] [(i : ι) → SemilatticeSup (π i)] (f : (i : ι) → π i) (i : ι) (a b : π i) :
          update f i (a b) = update f i a update f i b
          theorem Function.update_inf {ι : Type u_1} {π : ιType u_2} [DecidableEq ι] [(i : ι) → SemilatticeInf (π i)] (f : (i : ι) → π i) (i : ι) (a b : π i) :
          update f i (a b) = update f i a update f i b

          Monotone functions and lattices #

          theorem Monotone.sup {α : Type u} {β : Type v} [Preorder α] [SemilatticeSup β] {f g : αβ} (hf : Monotone f) (hg : Monotone g) :

          Pointwise supremum of two monotone functions is a monotone function.

          theorem Monotone.inf {α : Type u} {β : Type v} [Preorder α] [SemilatticeInf β] {f g : αβ} (hf : Monotone f) (hg : Monotone g) :

          Pointwise infimum of two monotone functions is a monotone function.

          theorem Monotone.max {α : Type u} {β : Type v} [Preorder α] [LinearOrder β] {f g : αβ} (hf : Monotone f) (hg : Monotone g) :
          Monotone fun (x : α) => f x g x

          Pointwise maximum of two monotone functions is a monotone function.

          theorem Monotone.min {α : Type u} {β : Type v} [Preorder α] [LinearOrder β] {f g : αβ} (hf : Monotone f) (hg : Monotone g) :
          Monotone fun (x : α) => f x g x

          Pointwise minimum of two monotone functions is a monotone function.

          theorem Monotone.le_map_sup {α : Type u} {β : Type v} [SemilatticeSup α] [SemilatticeSup β] {f : αβ} (h : Monotone f) (x y : α) :
          f x f y f (x y)
          theorem Monotone.map_inf_le {α : Type u} {β : Type v} [SemilatticeInf α] [SemilatticeInf β] {f : αβ} (h : Monotone f) (x y : α) :
          f (x y) f x f y
          theorem Monotone.of_map_inf_le_left {α : Type u} {β : Type v} [SemilatticeInf α] [Preorder β] {f : αβ} (h : ∀ (x y : α), f (x y) f x) :
          theorem Monotone.of_map_inf_le {α : Type u} {β : Type v} [SemilatticeInf α] [SemilatticeInf β] {f : αβ} (h : ∀ (x y : α), f (x y) f x f y) :
          theorem Monotone.of_map_inf {α : Type u} {β : Type v} [SemilatticeInf α] [SemilatticeInf β] {f : αβ} (h : ∀ (x y : α), f (x y) = f x f y) :
          theorem Monotone.of_left_le_map_sup {α : Type u} {β : Type v} [SemilatticeSup α] [Preorder β] {f : αβ} (h : ∀ (x y : α), f x f (x y)) :
          theorem Monotone.of_le_map_sup {α : Type u} {β : Type v} [SemilatticeSup α] [SemilatticeSup β] {f : αβ} (h : ∀ (x y : α), f x f y f (x y)) :
          theorem Monotone.of_map_sup {α : Type u} {β : Type v} [SemilatticeSup α] [SemilatticeSup β] {f : αβ} (h : ∀ (x y : α), f (x y) = f x f y) :
          theorem Monotone.map_sup {α : Type u} {β : Type v} [LinearOrder α] [SemilatticeSup β] {f : αβ} (hf : Monotone f) (x y : α) :
          f (x y) = f x f y
          theorem Monotone.map_inf {α : Type u} {β : Type v} [LinearOrder α] [SemilatticeInf β] {f : αβ} (hf : Monotone f) (x y : α) :
          f (x y) = f x f y
          theorem MonotoneOn.sup {α : Type u} {β : Type v} [Preorder α] [SemilatticeSup β] {f g : αβ} {s : Set α} (hf : MonotoneOn f s) (hg : MonotoneOn g s) :
          MonotoneOn (f g) s

          Pointwise supremum of two monotone functions is a monotone function.

          theorem MonotoneOn.inf {α : Type u} {β : Type v} [Preorder α] [SemilatticeInf β] {f g : αβ} {s : Set α} (hf : MonotoneOn f s) (hg : MonotoneOn g s) :
          MonotoneOn (f g) s

          Pointwise infimum of two monotone functions is a monotone function.

          theorem MonotoneOn.max {α : Type u} {β : Type v} [Preorder α] [LinearOrder β] {f g : αβ} {s : Set α} (hf : MonotoneOn f s) (hg : MonotoneOn g s) :
          MonotoneOn (fun (x : α) => f x g x) s

          Pointwise maximum of two monotone functions is a monotone function.

          theorem MonotoneOn.min {α : Type u} {β : Type v} [Preorder α] [LinearOrder β] {f g : αβ} {s : Set α} (hf : MonotoneOn f s) (hg : MonotoneOn g s) :
          MonotoneOn (fun (x : α) => f x g x) s

          Pointwise minimum of two monotone functions is a monotone function.

          theorem MonotoneOn.of_map_inf {α : Type u} {β : Type v} {f : αβ} {s : Set α} [SemilatticeInf α] [SemilatticeInf β] (h : ∀ (x : α), x s∀ (y : α), y sf (x y) = f x f y) :
          theorem MonotoneOn.of_map_sup {α : Type u} {β : Type v} {f : αβ} {s : Set α} [SemilatticeSup α] [SemilatticeSup β] (h : ∀ (x : α), x s∀ (y : α), y sf (x y) = f x f y) :
          theorem MonotoneOn.map_sup {α : Type u} {β : Type v} {f : αβ} {s : Set α} {x y : α} [LinearOrder α] [SemilatticeSup β] (hf : MonotoneOn f s) (hx : x s) (hy : y s) :
          f (x y) = f x f y
          theorem MonotoneOn.map_inf {α : Type u} {β : Type v} {f : αβ} {s : Set α} {x y : α} [LinearOrder α] [SemilatticeInf β] (hf : MonotoneOn f s) (hx : x s) (hy : y s) :
          f (x y) = f x f y
          theorem Antitone.sup {α : Type u} {β : Type v} [Preorder α] [SemilatticeSup β] {f g : αβ} (hf : Antitone f) (hg : Antitone g) :

          Pointwise supremum of two monotone functions is a monotone function.

          theorem Antitone.inf {α : Type u} {β : Type v} [Preorder α] [SemilatticeInf β] {f g : αβ} (hf : Antitone f) (hg : Antitone g) :

          Pointwise infimum of two monotone functions is a monotone function.

          theorem Antitone.max {α : Type u} {β : Type v} [Preorder α] [LinearOrder β] {f g : αβ} (hf : Antitone f) (hg : Antitone g) :
          Antitone fun (x : α) => f x g x

          Pointwise maximum of two monotone functions is a monotone function.

          theorem Antitone.min {α : Type u} {β : Type v} [Preorder α] [LinearOrder β] {f g : αβ} (hf : Antitone f) (hg : Antitone g) :
          Antitone fun (x : α) => f x g x

          Pointwise minimum of two monotone functions is a monotone function.

          theorem Antitone.map_sup_le {α : Type u} {β : Type v} [SemilatticeSup α] [SemilatticeInf β] {f : αβ} (h : Antitone f) (x y : α) :
          f (x y) f x f y
          theorem Antitone.le_map_inf {α : Type u} {β : Type v} [SemilatticeInf α] [SemilatticeSup β] {f : αβ} (h : Antitone f) (x y : α) :
          f x f y f (x y)
          theorem Antitone.map_sup {α : Type u} {β : Type v} [LinearOrder α] [SemilatticeInf β] {f : αβ} (hf : Antitone f) (x y : α) :
          f (x y) = f x f y
          theorem Antitone.map_inf {α : Type u} {β : Type v} [LinearOrder α] [SemilatticeSup β] {f : αβ} (hf : Antitone f) (x y : α) :
          f (x y) = f x f y
          theorem AntitoneOn.sup {α : Type u} {β : Type v} [Preorder α] [SemilatticeSup β] {f g : αβ} {s : Set α} (hf : AntitoneOn f s) (hg : AntitoneOn g s) :
          AntitoneOn (f g) s

          Pointwise supremum of two antitone functions is an antitone function.

          theorem AntitoneOn.inf {α : Type u} {β : Type v} [Preorder α] [SemilatticeInf β] {f g : αβ} {s : Set α} (hf : AntitoneOn f s) (hg : AntitoneOn g s) :
          AntitoneOn (f g) s

          Pointwise infimum of two antitone functions is an antitone function.

          theorem AntitoneOn.max {α : Type u} {β : Type v} [Preorder α] [LinearOrder β] {f g : αβ} {s : Set α} (hf : AntitoneOn f s) (hg : AntitoneOn g s) :
          AntitoneOn (fun (x : α) => f x g x) s

          Pointwise maximum of two antitone functions is an antitone function.

          theorem AntitoneOn.min {α : Type u} {β : Type v} [Preorder α] [LinearOrder β] {f g : αβ} {s : Set α} (hf : AntitoneOn f s) (hg : AntitoneOn g s) :
          AntitoneOn (fun (x : α) => f x g x) s

          Pointwise minimum of two antitone functions is an antitone function.

          theorem AntitoneOn.of_map_inf {α : Type u} {β : Type v} {f : αβ} {s : Set α} [SemilatticeInf α] [SemilatticeSup β] (h : ∀ (x : α), x s∀ (y : α), y sf (x y) = f x f y) :
          theorem AntitoneOn.of_map_sup {α : Type u} {β : Type v} {f : αβ} {s : Set α} [SemilatticeSup α] [SemilatticeInf β] (h : ∀ (x : α), x s∀ (y : α), y sf (x y) = f x f y) :
          theorem AntitoneOn.map_sup {α : Type u} {β : Type v} {f : αβ} {s : Set α} {x y : α} [LinearOrder α] [SemilatticeInf β] (hf : AntitoneOn f s) (hx : x s) (hy : y s) :
          f (x y) = f x f y
          theorem AntitoneOn.map_inf {α : Type u} {β : Type v} {f : αβ} {s : Set α} {x y : α} [LinearOrder α] [SemilatticeSup β] (hf : AntitoneOn f s) (hx : x s) (hy : y s) :
          f (x y) = f x f y

          Products of (semi-)lattices #

          instance Prod.instMax_mathlib (α : Type u) (β : Type v) [Max α] [Max β] :
          Max (α × β)
          Equations
          instance Prod.instMin_mathlib (α : Type u) (β : Type v) [Min α] [Min β] :
          Min (α × β)
          Equations
          @[simp]
          theorem Prod.mk_sup_mk (α : Type u) (β : Type v) [Max α] [Max β] (a₁ a₂ : α) (b₁ b₂ : β) :
          (a₁, b₁) (a₂, b₂) = (a₁ a₂, b₁ b₂)
          @[simp]
          theorem Prod.mk_inf_mk (α : Type u) (β : Type v) [Min α] [Min β] (a₁ a₂ : α) (b₁ b₂ : β) :
          (a₁, b₁) (a₂, b₂) = (a₁ a₂, b₁ b₂)
          @[simp]
          theorem Prod.fst_sup (α : Type u) (β : Type v) [Max α] [Max β] (p q : α × β) :
          (p q).fst = p.fst q.fst
          @[simp]
          theorem Prod.fst_inf (α : Type u) (β : Type v) [Min α] [Min β] (p q : α × β) :
          (p q).fst = p.fst q.fst
          @[simp]
          theorem Prod.snd_sup (α : Type u) (β : Type v) [Max α] [Max β] (p q : α × β) :
          (p q).snd = p.snd q.snd
          @[simp]
          theorem Prod.snd_inf (α : Type u) (β : Type v) [Min α] [Min β] (p q : α × β) :
          (p q).snd = p.snd q.snd
          @[simp]
          theorem Prod.swap_sup (α : Type u) (β : Type v) [Max α] [Max β] (p q : α × β) :
          (p q).swap = p.swap q.swap
          @[simp]
          theorem Prod.swap_inf (α : Type u) (β : Type v) [Min α] [Min β] (p q : α × β) :
          (p q).swap = p.swap q.swap
          theorem Prod.sup_def (α : Type u) (β : Type v) [Max α] [Max β] (p q : α × β) :
          p q = (p.fst q.fst, p.snd q.snd)
          theorem Prod.inf_def (α : Type u) (β : Type v) [Min α] [Min β] (p q : α × β) :
          p q = (p.fst q.fst, p.snd q.snd)
          instance Prod.instSemilatticeSup (α : Type u) (β : Type v) [SemilatticeSup α] [SemilatticeSup β] :
          Equations
          instance Prod.instSemilatticeInf (α : Type u) (β : Type v) [SemilatticeInf α] [SemilatticeInf β] :
          Equations
          instance Prod.instLattice (α : Type u) (β : Type v) [Lattice α] [Lattice β] :
          Lattice (α × β)
          Equations
          instance Prod.instDistribLattice (α : Type u) (β : Type v) [DistribLattice α] [DistribLattice β] :
          Equations

          Subtypes of (semi-)lattices #

          @[reducible, inline]
          abbrev Subtype.semilatticeSup {α : Type u} [SemilatticeSup α] {P : αProp} (Psup : ∀ ⦃x y : α⦄, P xP yP (x y)) :
          SemilatticeSup { x : α // P x }

          A subtype forms a -semilattice if preserves the property. See note [reducible non-instances].

          Equations
          • One or more equations did not get rendered due to their size.
          @[reducible, inline]
          abbrev Subtype.semilatticeInf {α : Type u} [SemilatticeInf α] {P : αProp} (Pinf : ∀ ⦃x y : α⦄, P xP yP (x y)) :
          SemilatticeInf { x : α // P x }

          A subtype forms a -semilattice if preserves the property. See note [reducible non-instances].

          Equations
          • One or more equations did not get rendered due to their size.
          @[reducible, inline]
          abbrev Subtype.lattice {α : Type u} [Lattice α] {P : αProp} (Psup : ∀ ⦃x y : α⦄, P xP yP (x y)) (Pinf : ∀ ⦃x y : α⦄, P xP yP (x y)) :
          Lattice { x : α // P x }

          A subtype forms a lattice if and preserve the property. See note [reducible non-instances].

          Equations
          • One or more equations did not get rendered due to their size.
          @[simp]
          theorem Subtype.coe_sup {α : Type u} [SemilatticeSup α] {P : αProp} (Psup : ∀ ⦃x y : α⦄, P xP yP (x y)) (x y : Subtype P) :
          ↑(x y) = x y
          @[simp]
          theorem Subtype.coe_inf {α : Type u} [SemilatticeInf α] {P : αProp} (Pinf : ∀ ⦃x y : α⦄, P xP yP (x y)) (x y : Subtype P) :
          ↑(x y) = x y
          @[simp]
          theorem Subtype.mk_sup_mk {α : Type u} [SemilatticeSup α] {P : αProp} (Psup : ∀ ⦃x y : α⦄, P xP yP (x y)) {x y : α} (hx : P x) (hy : P y) :
          x, hx y, hy = x y,
          @[simp]
          theorem Subtype.mk_inf_mk {α : Type u} [SemilatticeInf α] {P : αProp} (Pinf : ∀ ⦃x y : α⦄, P xP yP (x y)) {x y : α} (hx : P x) (hy : P y) :
          x, hx y, hy = x y,
          @[reducible, inline]
          abbrev Function.Injective.semilatticeSup {α : Type u} {β : Type v} [Max α] [SemilatticeSup β] (f : αβ) (hf_inj : Injective f) (map_sup : ∀ (a b : α), f (a b) = f a f b) :

          A type endowed with is a SemilatticeSup, if it admits an injective map that preserves to a SemilatticeSup. See note [reducible non-instances].

          Equations
          @[reducible, inline]
          abbrev Function.Injective.semilatticeInf {α : Type u} {β : Type v} [Min α] [SemilatticeInf β] (f : αβ) (hf_inj : Injective f) (map_inf : ∀ (a b : α), f (a b) = f a f b) :

          A type endowed with is a SemilatticeInf, if it admits an injective map that preserves to a SemilatticeInf. See note [reducible non-instances].

          Equations
          @[reducible, inline]
          abbrev Function.Injective.lattice {α : Type u} {β : Type v} [Max α] [Min α] [Lattice β] (f : αβ) (hf_inj : Injective f) (map_sup : ∀ (a b : α), f (a b) = f a f b) (map_inf : ∀ (a b : α), f (a b) = f a f b) :

          A type endowed with and is a Lattice, if it admits an injective map that preserves and to a Lattice. See note [reducible non-instances].

          Equations
          • One or more equations did not get rendered due to their size.
          @[reducible, inline]
          abbrev Function.Injective.distribLattice {α : Type u} {β : Type v} [Max α] [Min α] [DistribLattice β] (f : αβ) (hf_inj : Injective f) (map_sup : ∀ (a b : α), f (a b) = f a f b) (map_inf : ∀ (a b : α), f (a b) = f a f b) :

          A type endowed with and is a DistribLattice, if it admits an injective map that preserves and to a DistribLattice. See note [reducible non-instances].

          Equations