Documentation

Carleson.Classical.CarlesonOperatorReal

def carlesonOperatorReal (K : ) (f : ) (x : ) :
Equations
  • One or more equations did not get rendered due to their size.
Instances For
    theorem annulus_real_eq {x r R : } (r_nonneg : 0 r) :
    {y : | dist x y Set.Ioo r R} = Set.Ioo (x - R) (x - r) Set.Ioo (x + r) (x + R)
    theorem annulus_real_volume {x r R : } (hr : r Set.Icc 0 R) :
    MeasureTheory.volume {y : | dist x y Set.Ioo r R} = ENNReal.ofReal (2 * (R - r))
    theorem annulus_measurableSet {x r R : } :
    MeasurableSet {y : | dist x y Set.Ioo r R}
    theorem sup_eq_sup_dense_of_continuous {f : ENNReal} {S : Set } (D : Set ) (hS : IsOpen S) (hD : Dense D) (hf : ContinuousOn f S) :
    rS, f r = rS D, f r
    theorem measurable_mul_kernel {n : } {f : } (hf : Measurable f) :
    Measurable (Function.uncurry fun (x y : ) => f y * K x y * Complex.exp (Complex.I * n * y))
    theorem carlesonOperatorReal_measurable {f : } (f_measurable : Measurable f) {B : } (f_bounded : ∀ (x : ), f x B) :
    theorem carlesonOperatorReal_mul {f : } {x a : } (ha : 0 < a) :
    carlesonOperatorReal K f x = a.toNNReal * carlesonOperatorReal K (fun (x : ) => 1 / a * f x) x
    theorem carlesonOperatorReal_eq_of_restrict_interval {f : } {a b x : } (hx : x Set.Icc a b) :
    carlesonOperatorReal K f x = carlesonOperatorReal K ((Set.Ioo (a - 1) (b + 1)).indicator f) x