theorem
measurable_mul_kernel
{n : ℤ}
{f : ℝ → ℂ}
(hf : Measurable f)
:
Measurable (Function.uncurry fun (x y : ℝ) => f y * K x y * Complex.exp (Complex.I * ↑n * ↑y))
theorem
carlesonOperatorReal_measurable
{f : ℝ → ℂ}
(f_measurable : Measurable f)
{B : ℝ}
(f_bounded : ∀ (x : ℝ), ‖f x‖ ≤ B)
:
theorem
carlesonOperatorReal_mul
{f : ℝ → ℂ}
{x a : ℝ}
(ha : 0 < a)
:
carlesonOperatorReal K f x = ↑a.toNNReal * carlesonOperatorReal K (fun (x : ℝ) => 1 / ↑a * f x) x
theorem
carlesonOperatorReal_eq_of_restrict_interval
{f : ℝ → ℂ}
{a b x : ℝ}
(hx : x ∈ Set.Icc a b)
:
carlesonOperatorReal K f x = carlesonOperatorReal K ((Set.Ioo (a - 1) (b + 1)).indicator f) x