Documentation

Carleson.Classical.ClassicalCarleson

theorem exceptional_set_carleson {f : } (cont_f : Continuous f) (periodic_f : Function.Periodic f (2 * Real.pi)) {ε : } (εpos : 0 < ε) :
ESet.Icc 0 (2 * Real.pi), MeasurableSet E MeasureTheory.volume.real E ε ∃ (N₀ : ), xSet.Icc 0 (2 * Real.pi) \ E, N > N₀, f x - partialFourierSum N f x ε
theorem carleson_interval {f : } (cont_f : Continuous f) (periodic_f : Function.Periodic f (2 * Real.pi)) :
∀ᵐ (x : ) ∂MeasureTheory.volume.restrict (Set.Icc 0 (2 * Real.pi)), Filter.Tendsto (fun (x_1 : ) => partialFourierSum x_1 f x) Filter.atTop (nhds (f x))
theorem Function.Periodic.ae_of_ae_restrict {T : } (hT : 0 < T) {a : } {P : Prop} (hP : Function.Periodic P T) (h : ∀ᵐ (x : ) ∂MeasureTheory.volume.restrict (Set.Ico a (a + T)), P x) :
∀ᵐ (x : ), P x
theorem classical_carleson {f : } (cont_f : Continuous f) (periodic_f : Function.Periodic f (2 * Real.pi)) :
∀ᵐ (x : ), Filter.Tendsto (fun (x_1 : ) => partialFourierSum x_1 f x) Filter.atTop (nhds (f x))