theorem
exceptional_set_carleson
{f : ℝ → ℂ}
(cont_f : Continuous f)
(periodic_f : Function.Periodic f (2 * Real.pi))
{ε : ℝ}
(εpos : 0 < ε)
:
theorem
carleson_interval
{f : ℝ → ℂ}
(cont_f : Continuous f)
(periodic_f : Function.Periodic f (2 * Real.pi))
:
∀ᵐ (x : ℝ) ∂MeasureTheory.volume.restrict (Set.Icc 0 (2 * Real.pi)),
Filter.Tendsto (fun (x_1 : ℕ) => partialFourierSum x_1 f x) Filter.atTop (nhds (f x))
theorem
classical_carleson
{f : ℝ → ℂ}
(cont_f : Continuous f)
(periodic_f : Function.Periodic f (2 * Real.pi))
:
∀ᵐ (x : ℝ), Filter.Tendsto (fun (x_1 : ℕ) => partialFourierSum x_1 f x) Filter.atTop (nhds (f x))